Kidney stones are collections of microcrystals formed inside the kidneys, which affect 6% to 12% of the population worldwide, with an increasing recurrence (50%-72%) after the first episode. The most abundant type is calcium oxalate (66%), described as monohydrated (COM) and dihydrated (COD). An issue in their chemistry is the transformation process of the metastable specie (COD) into the stable one, which is chemically, and in appearance, monohydrated. Since the origin of these species is different, it is important to differentiate between the transformation stage (and what stabilize COD) to understand the physiopathology and prevent the patients' recurrence. This work focuses on the organic matter distribution along these nephroliths by synchrotron radiation-based infrared microspectroscopy. Differences in the asymmetric stretching of the aliphatic hydrocarbons suggest that lipids may participate in the stabilization of COD and as inhibitors of COM formation/development; however, the presence of proteins in the nucleus could indicate a promoting role.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbio.202000303DOI Listing

Publication Analysis

Top Keywords

calcium oxalate
8
kidney stones
8
infrared microspectroscopy
8
oxalate kidney
4
stones organic
4
organic matter?
4
matter? synchrotron
4
synchrotron based
4
based infrared
4
microspectroscopy study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!