This research 12 microalgal species were screened for biofilm attached culture in the treatment of anaerobically digested swine wastewater (ADSW). The influence of ADSW on biomass productivity and removal efficiencies were evaluated using biofilm attached culture with the selected Chlorella pyrenoidosa. The variation of nutritional components from algal cells were further analysed to evaluate the potential applications of C. pyrenoidosa. The results showed that C. pyrenoidosa had the highest tolerance to ADSW, and the highest removal efficiencies for wastewater pollutants were reached when cultured in 5 times diluted ADSW. These test conditions resulted in an algal cell biomass composed of 57.30% proteins, 14.87% extracellular polysaccharide, 3.08% crude fibre, 5.57% crude ash, 2.85% moisture. Amino acids in proteins contained 21.73% essential amino acids and the EAA/NEAA value was 0.64. The essential amino acid score indicates that the selected C. pyrenoidosa could be a good protein source for feed addition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2020.124054 | DOI Listing |
Sci Rep
January 2025
PKUCare Lu'an Hospital, 046204, Shanxi, China.
Periodontitis, a common chronic inflammatory condition caused by bacteria, leads to loss of attachment, resorption of alveolar bone, and ultimately tooth loss. Therefore, reducing bacterial load and fostering alveolar bone regeneration are essential components in the treatment of periodontitis. In this study, we prepared smaller-sized Ag-Metal Organic Frameworks (Ag@MOF) and loaded with sodium alginate (Alg) hydrogel for periodontitis treatment.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
Biofilms are ubiquitous surface-associated bacterial communities embedded in an extracellular matrix. It is commonly assumed that biofilm cells are glued together by the matrix; however, how the specific biochemistry of matrix components affects the cell-matrix interactions and how these interactions vary during biofilm growth remain unclear. Here, we investigate cell-matrix interactions in Vibrio cholerae, the causative agent of cholera.
View Article and Find Full Text PDFJ Bacteriol
December 2024
School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, USA.
Unlabelled: Ubiquitous in nature, biofilms provide stability in a fluctuating environment and provide protection from stressors. Biofilms formed in industrial processes are exceedingly problematic and costly. While biofilms of sulfate-reducing bacteria in the environment are often beneficial because of their capacity to remove toxic metals from water, in industrial pipelines, these biofilms cause a major economic impact due to their involvement in metal and concrete corrosion.
View Article and Find Full Text PDFJ Biomol Struct Dyn
February 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India.
is one of the opportunistic pathogens that may cause serious health problems and can produce several virulence factors, which are responsible for various infections, particularly in immunocompromised patients. They are responsible for producing infections on indwelling medical devices by attaching on to them and forming a biofilm. Antibiofilm, antivirulence, and gene expression studies of biofilm treated with esters of flavonols were evaluated.
View Article and Find Full Text PDFOpen Vet J
November 2024
Livestock and Wildlife Laboratory, Arid Lands Institute (I.R.A), University of Gabès, Médenine, Tunisia.
Background: Many protective proteins, including lactoferrin and heavy chain antibodies, are present in camel colostrum, giving it a distinctive composition. Beyond a broad spectrum of pathogens, these proteins demonstrate antibacterial properties.
Aim: The current research assessed the prophylactic properties of camel colostrum against F17.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!