Ethnopharmacological Relevance: Baitouweng (BTW) decoction, a Chinese traditional medicine prescription, has been used to treat ulcerative colitis (UC) over hundreds of years. In this study, we investigated the anti-inflammatory effects of BTW and intestinal flora of dextran sulfate sodium (DSS)-induced UC mice, and we investigated the mechanism of BTW in the preliminary treatment of UC.
Aim Of Study: The aim of this study was to elucidate the mechanism of BTW in treating UC through molecular biology and high-throughput sequencing.
Methods: DSS-induced UC mice were established and randomly divided into the following four groups: control group, DSS group, BTW group and sulfasalazine (SASP) group. Except for the control group, 3% DSS drinking water was given to each group for 7 days, and the other two groups were intragastrically administered with BTW and SASP. Mice were sacrificed after gavage for 10 days. Body weight loss, disease activity index (DAI), colon length, colon histopathology and the expression of inflammatory cytokines were measured. Intestinal content samples were collected, and intestinal flora differences were analyzed by 16 S rDNA sequencing.
Results: BTW effectively reduced the symptoms and histopathological score of UC mice, and it reduced the production of IL-6, IL-1β and TNF-α. Activation of the IL-6/STAT3 pathway was also suppressed by BTW treatment. Moreover, 16 S rDNA sequencing showed that the intestinal flora of mice in the DSS group was disordered compared to the control group. After treatment with BTW, the diversity of intestinal flora was significantly improved. At the phylum level, the proportion of Firmicutes to Bacteroidetes was decreased, and the ratio of Proteobacteria was decreased. At the genus level, the relative abundance of Escherichia-Shigella was decreased, but that of Lactobacillus and Akkermansia were increased.
Conclusion: BTW significantly improved the inflammatory symptoms of mice with acute colitis, and the latent mechanism of BTW may be related to various signaling pathways, including the modulation of intestinal microflora and inflammatory signaling pathways, such as IL-6/STAT3.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2020.113357 | DOI Listing |
Chin Med
January 2025
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
Background: Jianwei Xiaoshi oral liquid (JWXS), a classical traditional prescription comprising various edible medicinal plants, has demonstrated significant efficacy in treating paediatric indigestion. It originates from Jianpi Pill, which is developed in the Ming Dynasty and nourishes the spleen and regulates gastrointestinal function. However, the specific molecular mechanisms involved remain unclear.
View Article and Find Full Text PDFVet Q
December 2025
Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.
This study aimed to investigate the effects of dietary isatidis root polysaccharide (IRP) on diarrhea, immunity, and intestinal health in weanling piglets. Forty healthy piglets were randomly assigned to five groups receiving varying dosages of IRP. The findings indicated that different concentrations of IRP significantly reduced diarrhea scores ( < 0.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
The negative impact of repeated-mild traumatic brain injury (rmTBI) is profoundly seen in circadian-disrupted individuals. The unrelenting inflammation, glial activation, and gut dysbiosis are key neuropathological aberrations in the aftermath of rmTBI. In this study, we examined the impact of chitosan lactate (CL) on circadian disturbance (CD) + rmTBI-generated neurological dysfunctions and its prebiotic response on the gut-brain axis.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
VIB-UGent Center for Inflammation Research, Ghent, Belgium.
Background: The brain is shielded from the peripheral circulation by central nervous system (CNS) barriers, comprising the well-known blood-brain barrier (BBB) and the less recognized blood-cerebrospinal fluid (CSF) barrier located within the brain ventricles. The gut microbiota represents a diverse and dynamic population of microorganisms that can influence the health of the host, including the development of neurological disorders like Alzheimer's disease (AD). However, the intricate mechanisms governing the interplay between the gut and brain remain elusive, and the means by which gut-derived signals traverse the CNS barriers remain unclear.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The University of Arizona - Tucson, Tucson, AZ, USA.
Background: Host commensal gut microbes are shown to be crucial for microglial maturation, and functions that involve innate immune responses to maintain brain homeostasis. Sex has a crucial role in the incidence of neurological diseases with females showing higher progression of AD compared with males. Transcriptomics has been a powerful tool for the characterization of microglial phenotypes however, there is a large gap in relating to their functional protein abundances.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!