A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cooperative effects on the compaction of DNA fragments by the nucleoid protein H-NS and the crowding agent PEG probed by Magnetic Tweezers. | LitMetric

Cooperative effects on the compaction of DNA fragments by the nucleoid protein H-NS and the crowding agent PEG probed by Magnetic Tweezers.

Biochim Biophys Acta Gen Subj

School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Raoul Follereau 3, 20854, Vedano al Lambro (MB), Italy. Electronic address:

Published: December 2020

Background: DNA bridging promoted by the H-NS protein, combined with the compaction induced by cellular crowding, plays a major role in the structuring of the E. coli genome. However, only few studies consider the effects of the physical interplay of these two factors in a controlled environment.

Methods: We apply a single molecule technique (Magnetic Tweezers) to study the nanomechanics of compaction and folding kinetics of a 6 kb DNA fragment, induced by H-NS bridging and/or PEG crowding.

Results: In the presence of H-NS alone, the DNA shows a step-wise collapse driven by the formation of multiple bridges, and little variations in the H-NS concentration-dependent unfolding force. Conversely, the DNA collapse force observed with PEG was highly dependent on the volume fraction of the crowding agent. The two limit cases were interpreted considering the models of loop formation in a pulled chain and pulling of an equilibrium globule respectively.

Conclusions: We observed an evident cooperative effect between H-NS activity and the depletion of forces induced by PEG.

General Significance: Our data suggest a double role for H-NS in enhancing compaction while forming specific loops, which could be crucial in vivo for defining specific mesoscale domains in chromosomal regions in response to environmental changes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2020.129725DOI Listing

Publication Analysis

Top Keywords

crowding agent
8
magnetic tweezers
8
h-ns
7
dna
5
cooperative effects
4
compaction
4
effects compaction
4
compaction dna
4
dna fragments
4
fragments nucleoid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!