Background: Gene expression profile analysis on mammalian cell lines and animal models after exposure to botulinum neurotoxin (BoNT) has been investigated in several studies in recent years. Microarray analysis provides a powerful tool for identifying critical signaling pathways involved in the biological and inflammatory responses to BoNT and helps determine the mechanism of the function of botulinum toxins. One of the pivotal clinical characteristics of BoNT is its prolonged on-site effects. The role of BoNT on the blockage of neurotransmitter acetylcholine release in the neuromuscular junction has been well established. However, the effects of the treatment time of BoNT on the human cellular model and its potential mechanism remain to be defined.
Methods: This study aimed to use gene microarray technology to compare the two physiological critical time points of BoNT type A (BoNT/A) treatment of human neuroblastoma cells and to advance our understanding of the profound biological influences that toxin molecules play in the neuronal cellular system. SH-SY5Y neuroblastoma cells were treated with BoNT/A for 4 and 48 h, which represent the time needed for the entrance of toxin into the cells and the time necessary for the initial appearance of the on-site effects after BoNT application, respectively.
Results: A comparison of the two time points identified 122 functional groups that are significantly changed. The top five groups are alternative splicing, phosphoprotein, nucleus, cytoplasm, and acetylation. Furthermore, after 48 h, there were 744 genes significantly up-regulated, and 624 genes significantly down-regulated (p‹ 0.01). These genes fell into the following neurological and biological annotation groups: Nervous system development, proteinaceous extracellular matrix, signaling pathways regulating pluripotency of stem cells, cellular function and signal transduction, and apoptosis. We have also noticed that the up-regulated groups contained neuronal cell development, nervous system development, and metabolic processes. In contrast, the down-regulated groups contained many chromosomes and cell cycle categories.
Conclusions: The effects of BoNT/A on neuronal cells extend beyond blocking the neurotransmitter release, and that BoNT/A is a multifunctional molecule that can evoke profound cellular responses which warrant a more in-depth understanding of the mechanism of the toxin's effects after administration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7487822 | PMC |
http://dx.doi.org/10.1186/s40360-020-00443-0 | DOI Listing |
Sci Rep
January 2025
Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
Aureobasidium melanogenum is a black yeast-like fungus that occurs frequently both in nature and in domestic environments. It is becoming increasingly important as an opportunistic pathogen. Nevertheless, its effect on human cells has not yet been studied.
View Article and Find Full Text PDFMitochondrion
January 2025
Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Campus Universitario, Tandil, Buenos Aires, Argentina; Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, Buenos Aires, Argentina. Electronic address:
Varicellovirus bovinealpha (BoAHV) 1 and 5 are closely related neurotropic alphaherpesviruses with distinct neuropathogenic potential. BoAHV-5 causes meningoencephalitis in calves whereas encephalitis by BoAHV-1 infection is sporadic. the mechanisms underlying the differences in tropism and clinical outcomes of the infections are not yet completely understood.
View Article and Find Full Text PDFCell Chem Biol
January 2025
Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:
The N-Myc transcription factor, encoded by MYCN, is a mechanistically validated, yet challenging, target for neuroblastoma (NB) therapy development. In normal neuronal progenitors, N-Myc undergoes rapid degradation, while, in MYCN-amplified NB cells, Aurora kinase A (Aurora-A) binds to and stabilizes N-Myc, resulting in elevated protein levels. Here, we demonstrate that targeted protein degradation of Aurora-A decreases N-Myc levels.
View Article and Find Full Text PDFBioorg Chem
December 2024
Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:
In the current study, a novel series of 1,2,4-oxadiazoles were designed, synthesized, and evaluated for their biological activities. A cell-based antiproliferative screening was accomplished on the newly synthesized 1,2,4-oxadiazoles along with our previously reported aryl(alkyl)azoles (AAAs) containing middle heterocyclic cores thiazole and oxazole. Among the tested compounds, naphthyl- thiazoles demonstrated higher antiproliferative activity and B3 was identified as the most potent compound with IC values in the range of 2.
View Article and Find Full Text PDFBioelectromagnetics
January 2025
Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
Although static magnetic fields (SMFs) have been reported to induce only minimal biological effects, it has been proposed that they may alter the effects of other agents, such as ionizing radiation. We sham-exposed or exposed human SH-SY5Y neuroblastoma cells to 0.5-, 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!