Passive stiffness characteristics and neutral zone quality of the scoliotic lumbar torso in the principle anatomical planes of motion.

Clin Biomech (Bristol)

Carilion Clinic, Department of Orthopaedic Surgery, 3 Riverside Circle, Roanoke, VA 24016, USA. Electronic address:

Published: December 2020

Background: The 1-10% prevalence rate of adult scoliosis frequently requires expensive therapy and surgical treatments and demands further research into the disease, especially with an aging population. Most studies examining the mechanics of scoliosis have focused on in vitro testing or computer simulations. This study quantitatively defined the passive stiffness properties of the in vivo scoliotic spine in three principle anatomical motions and identified differences relative to healthy controls.

Methods: Adult scoliosis (n = 14) and control (n = 17) participants with no history of spondylolisthesis, spinal fracture, or spinal surgery participated in three different tests (torso lateral side bending, torso axial rotation, and torso flexion/extension) that isolated mobility to the in vivo lumbar spine. The spinal stiffnesses and spinal neutral zone width were calculated. These parameters were statistically compared between factor of population and within factor of direction.

Findings: Torque-rotational displacement data were fit using a double sigmoid function, resulting an in excellent overall fit (Avg. R = 0.95). There was a significant interaction effect between populations when comparing axial twist neutral zone width vs. lateral bend neutral zone width and axial twist stiffness vs. lateral bend stiffness. The axial twist neutral zone width magnitude was significantly larger in scoliosis patients.

Interpretation: The present study is the first investigation to quantify the whole trunk neutral zone of the scoliotic lumbar spine. Future research is needed to determine if lumbar spine mechanical characteristics can help explain progression of scoliosis and complement scoliosis classification systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinbiomech.2020.105162DOI Listing

Publication Analysis

Top Keywords

neutral zone
24
zone width
16
lumbar spine
12
axial twist
12
passive stiffness
8
scoliotic lumbar
8
principle anatomical
8
adult scoliosis
8
twist neutral
8
lateral bend
8

Similar Publications

Background: Capillary electrophoresis (CE) is a highly versatile separation technique widely used in analytical chemistry. Traditionally, CE can be categorized as either aqueous or non-aqueous systems based on the buffer solvents employed. For decades, non-aqueous CE has been predominantly associated with the use of organic solvents, a perception deeply ingrained in the scientific community.

View Article and Find Full Text PDF

Water level fluctuation regulated the effect of bacterial community on ecosystem multifunctionality in Poyang Lake wetland.

J Environ Manage

January 2025

Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing, 211135, China. Electronic address:

Soil bacterial communities are critical for maintaining ecosystem functions, yet the impact of water level fluctuations on ecosystem multifunctionality (EMF) and the role of bacterial communities in the lake water-level-fluctuating zone (WLFZ) remain poorly understood. This study investigated how seasonal water level fluctuations influence EMF and their relationships with soil bacterial communities through a two-year field survey. We found that soil bacterial diversity was significantly positively correlated with EMF.

View Article and Find Full Text PDF

Compound Shougong Powder (CSP) is a traditional Chinese medicine (TCM) preparation recognized for its efficacy in reducing swelling and relieving pain. It is primarily used clinically for the treatment of malignant tumors. However, research on the chemical compounds present in CSP remains limited.

View Article and Find Full Text PDF

The influence of surface-groundwater interactions on nutrient dynamics in urban in-channel treatment systems.

Environ Monit Assess

December 2024

Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, 8140, Christchurch, New Zealand.

In-channel water treatment systems remove excess nutrients through biological, chemical, and physical processes associated with the hyporheic zone. However, the impact of surface and groundwater interactions on these treatment processes is poorly understood. This research aims to assess the influence of varying groundwater conditions (neutral, drainage water, and groundwater seepage) and different bed sediment hydraulic conductivities on nitrogen and phosphorus dynamics in in-channel treatment systems.

View Article and Find Full Text PDF

The study was carried out to evaluate the availability, use as livestock feed and nutritional value of fruit waste in a few chosen urban (within) and peri-urban (around) areas of West Arsi and Sidama Regional State, Ethiopia. The study areas were chosen using a muti-stage purposive sampling technique and 306 respondents in total-102 from each of Shashemene, Hawassa and Yirgalem-were randomly chosen and interviewed. We used established methodology to examine the nutritional values of six (avocado seed, avocado peel with pulp, papaya pomace, mango, pineapple and banana peels) commonly used fruit waste (FBPs) samples for chemical composition and digestibility analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!