A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chronic electronic cigarette use elicits molecular changes related to pulmonary pathogenesis. | LitMetric

Chronic electronic cigarette use elicits molecular changes related to pulmonary pathogenesis.

Toxicol Appl Pharmacol

Department of Occupational and Environmental Health Sciences, West Virginia University School of Public Health, Morgantown, WV 26506, United States of America; West Virginia Clinical and Translational Science Institute, Morgantown, WV 26506, United States of America; Center for Inhalation Toxicology, Morgantown, WV 26506, United States of America. Electronic address:

Published: November 2020

The relative safety of chronic exposure to electronic cigarette (e-cig) aerosol remains unclear in terms of lung pathogenesis. Therefore, this study aims to evaluate gene/protein biomarkers, which are associated with cigarette-induced pulmonary injury in animals chronically exposed to nicotine containing e-cig aerosol. C57BL/6 J mice were randomly assigned to three exposure groups: e-cig, tobacco cigarette smoke, and filtered air. Lung tissues and/or paraffin embedded slides were used to evaluate gene and/or protein expressions of the CYP450 metabolism (CYP1A1, CYP2A5, and CYP3A11), oxidative stress (Nrf2, SOD1), epithelial-mesenchymal transition (E-cadherin and vimentin), lung pathogenesis (AhR), and survival/apoptotic pathways (p-AKT, BCL-XL, p53, p21, and CRM1). Expressions of E-cadherin and CRM1 were significantly decreased, while CYP1A1, AhR, SOD1 and BCL-XL were significantly upregulated in the e-cig group compared to the control (p < 0.05). Nuclear sub-cellular localization of p53, evaluated by immunohistochemistry staining, in bronchiolar tissues was higher in the e-cig group (25.3 ± 2.7%) as compared to controls (12.1 ± 1.8%) (p < 0.01). Although the biomarkers responses were not identical, in general, the responses had similar qualitative trends between the e-cig and cigarette groups. As these related molecular changes are involved in the pathogenesis of cigarette-induced lung injury, the possibility exists that e-cigs can produce a similar outcome. Although further investigation is warranted, e-cigs are unlikely to be considered as safe in terms of pulmonary health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554218PMC
http://dx.doi.org/10.1016/j.taap.2020.115224DOI Listing

Publication Analysis

Top Keywords

electronic cigarette
8
e-cig aerosol
8
lung pathogenesis
8
chronic electronic
4
cigarette elicits
4
elicits molecular
4
molecular changes
4
changes pulmonary
4
pulmonary pathogenesis
4
pathogenesis relative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!