Rapid detection of carbapenemases and accurate reporting of carbapenem MICs is critical for appropriate treatment and infection control. We evaluated the BD Phoenix NMIC-500 panel for detection and classification of carbapenemases and antimicrobial susceptibility testing (AST) for carbapenems. A total of 235 isolates were tested; 47 carbapenemase-producing Enterobacterales, 52 non-carbapenemase-producing carbapenem-resistant Enterobacterales (non-CP-CRE), 136 carbapenem-susceptible Enterobacterales (CSE). The sensitivity of carbapenemase-producing organism (CPO) detection was 97.9%, the specificity was 100% for CSE but 32.7% for non-CP-CREs. All the 35 false-positive cases were non-CP-CREs; 23 out of the 35 were determined as untyped carbapenemase producer (CP), nine were mistyped as class B, and three were as class A. The detection rate/correct classification rate for class A, B, and D carbapenemase was 100%/78.6%, 100%/100%, and 80%/60%, respectively. To supplement the low specificity, it is suggested to report carbapenemase-producer (CP) positive results as "strongly suspicious for carbapenem resistance but carbapenemase production needs to be confirmed" and perform the confirmatory test. The EA and CA for ertapenem, imipenem, and meropenem was 99.1%/99.6%, 89.4%/90.6%, and 95.3%/95.7%. In conclusion, the BD Phoenix CPO detect panel provides advantage in that the carbapenemase test is automated and the results can be obtained within 6 h but the low specificity in CREs needs to be improved. In addition, accurate reporting of meropenem MICs will be helpful for clinicians to choose treatment options.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mimet.2020.106042DOI Listing

Publication Analysis

Top Keywords

phoenix nmic-500
8
nmic-500 panel
8
carbapenem-susceptible enterobacterales
8
accurate reporting
8
low specificity
8
carbapenemase
5
detection
5
performance evaluation
4
evaluation automated
4
automated phoenix
4

Similar Publications

Carbapenem non-susceptibility overcalling by BD phoenix NMIC-500 panel.

J Infect Chemother

October 2024

Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. Electronic address:

We aimed to assess the accuracy of BD Phoenix for determining carbapenem susceptibility because we observed a decline in carbapenem susceptibility rate from the biannual cumulative data, after we transitioned to the BD Phoenix form Vitek 2 system. Between October 2021 and May 2022, we collected 82 non-duplicated Enterobacterales showing non-susceptible to at least one of the three carbapenems by BD Phoenix. We performed the broth microdilution (BMD) and disk diffusion (DD) according to the CLSI guideline.

View Article and Find Full Text PDF

Evaluation of the BD Phoenix CPO Detect Panel for Detection and Classification of Carbapenemase Producing .

Antibiotics (Basel)

July 2023

Department of Laboratory Medicine, Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea.

Carbapenem-resistant (CRE) pose a serious public health threat due to their resistance to most antibiotics. Rapid and correct detection of carbapenemase producing organisms (CPOs) can help inform clinician decision making on antibiotic therapy. The BD Phoenix™ CPO detect panel, as part of antimicrobial susceptibility testing (AST), detects carbapenemase activity (P/N) and categorizes CPOs according to Ambler classes.

View Article and Find Full Text PDF

Performance evaluation of automated BD Phoenix NMIC-500 panel for carbapenemase detection in carbapenem-resistant and carbapenem-susceptible Enterobacterales.

J Microbiol Methods

October 2020

Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. Electronic address:

Rapid detection of carbapenemases and accurate reporting of carbapenem MICs is critical for appropriate treatment and infection control. We evaluated the BD Phoenix NMIC-500 panel for detection and classification of carbapenemases and antimicrobial susceptibility testing (AST) for carbapenems. A total of 235 isolates were tested; 47 carbapenemase-producing Enterobacterales, 52 non-carbapenemase-producing carbapenem-resistant Enterobacterales (non-CP-CRE), 136 carbapenem-susceptible Enterobacterales (CSE).

View Article and Find Full Text PDF

Background: The emergence of carbapenem resistance among gram-negative bacilli (GNB), mediated by carbapenemase production, has necessitated the development of a simple and accurate device for detecting minimum inhibitory concentrations (MICs) and resistance mechanisms, especially carbapenemase production. We evaluated the performance of the BD Phoenix NMIC-500 panel (BD Diagnostic Systems, Sparks, MD, USA) for antimicrobial susceptibility testing (AST) and carbapenemase-producing organism (CPO) detection.

Methods: We used 450 non-duplicate clinical GNB isolates from six general hospitals in Korea (409 and 41 glucose non-fermenting bacilli [GNFB] isolates).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!