In the present work, we synthesized silver nanoparticles supported by rice husk by hydrothermal treatment, as-synthesized silver nanoparticles rice husk (AgNPs-RH) bio-composite mixed with potter clay thoroughly, molded, dried into a disc-shaped before firing and applying as a point of use larvicidal agent. As designed, porous terracotta disc (PTD) infused with AgNPs-RH-biocomposite were characterized by UV spectrophotometer, Fourier-transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction analysis and energy-dispersive X-ray spectroscopy. The amount of silver ions released from the PTD was also found to be within the prescribed limit of 0.1 ppm-level. Later we dropped the PTD and tested its larvicidal activity against the IV instar larva stage of Aedes, Anopheles and Culex species. We found 100% larvicidal mortality in 24 h of exposure to the designed PTD and the amount of silver released from the porous disc was found to be 0.0343 ppm. Further from the histopathological studies of dead larvae revealed that the silver ions from the PTD have substantially damaged the exoskeleton of larvae.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exppara.2020.107988 | DOI Listing |
ACS Appl Mater Interfaces
September 2023
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
Generation and utilization of green heat produced from solar energy demand broadband absorbers with the elusive combination of strong phonon-driven photon thermalization and, contrastingly, weak phonon-lattice thermal conductivity. Here, we report a new class of porous, nanostructured hard-carbon florets (NCFs) consisting of isotropically assembled conical microcavities for greater light entrapment and efficient broad-band absorption (95% over 250-2500 nm). Resembling marigolds, the NCF exhibits short-range graphitic order that promotes instantaneous and efficient solar-thermal conversion (η = 87%) while exhibiting long-range intrinsic disorder providing low thermal conductivity (1.
View Article and Find Full Text PDFPolymers (Basel)
February 2022
Engineering Research Center of Historical and Cultural Heritage Protection, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.
Cracks are one of the most common issues affecting colored pottery relics; these can be divided into macroscopic cracks, recognizable by the human eye, and micron cracks, which cannot be observed by the naked eye. The gradual development of micron cracks eventually leads to large-scale cracks and the shedding of the coating layer. The repair of such micron cracks poses a key technical difficulty in restoring painted pottery remnants from the Western Han Dynasty.
View Article and Find Full Text PDFExp Parasitol
November 2020
Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
In the present work, we synthesized silver nanoparticles supported by rice husk by hydrothermal treatment, as-synthesized silver nanoparticles rice husk (AgNPs-RH) bio-composite mixed with potter clay thoroughly, molded, dried into a disc-shaped before firing and applying as a point of use larvicidal agent. As designed, porous terracotta disc (PTD) infused with AgNPs-RH-biocomposite were characterized by UV spectrophotometer, Fourier-transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction analysis and energy-dispersive X-ray spectroscopy. The amount of silver ions released from the PTD was also found to be within the prescribed limit of 0.
View Article and Find Full Text PDFBioresour Technol
April 2019
e-Bio Center, Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milan, Italy. Electronic address:
The aim of this work were to study terracotta-based porous air-water separators (4 mm thickness) in microbial recycling cells (MRCs) fed with cow manure (CM), swine manure (SM) and dairy wastewater (DW). Over 125 days, besides the removal of 60-90% of soluble-COD, considerable fractions of the main macronutrients (C, N, P, K, Fe, Mn, Ca, Mg) were removed from the wastewater and deposited on the terracotta separators as both inorganic salts and biomass deposits. Water evaporation at air-water interface as well as the high cathodic pH (10-12), induced by oxygen reduction to OH, were the predominant factors leading to precipitation.
View Article and Find Full Text PDFBioprocess Biosyst Eng
December 2013
Bristol Robotics Laboratory, University of the West of England, T-Building, Frenchay Campus, Bristol, BS16 1QY, UK,
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!