Pesticide inputs into surface waters may cause harmful effects on aquatic life communities and substantially contribute to environmental pollution. The present study aimed at evaluating the input pathways in the Querne/Weida catchment (central Germany) to efficiently target mitigation measures of pesticide losses. Relevant pesticide substances were measured in surface waters in agricultural and urban surroundings and in soil samples within the catchment area. Pesticides application data from farmers were analyzed. Additionally, batch tests were performed to determine sorption and degradation of relevant pesticides for site specific soil properties. Frequency of detection, number of pesticides and maximum concentrations were much higher in the surface water samples in mainly urban surroundings compared to those in agricultural surrounding. The most frequently detected substances were glyphosate, AMPA, diflufenican and tebuconazole in surface water samples and diflufenican, boscalid, tebuconazole and epoxiconazole in the topsoil samples. Glyphosate and AMPA contributed to the highest concentrations in surface water samples (max. 58 μg L) and soil samples (max. 0.19 mg kg). In most cases, pesticide detections in surface water and soil were not consistent with application data from farmers, indicating that urban sources may affect water quality in the catchment area substantially. However, it was observed that pesticide substances remain in the soil over a long time supported by sorption on the soil matrix. Therefore, delayed inputs into surface waters could be suspected. For the implementation of reduction measures, both urban and agricultural sources should be considered. Novel findings of the study: pesticide detections were not consistent with application data from farmers, urban sources contributed substantially to pesticide pollution of surface waters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2020.115186DOI Listing

Publication Analysis

Top Keywords

surface waters
20
surface water
16
inputs surface
12
urban sources
12
application data
12
data farmers
12
water samples
12
surface
9
pesticide inputs
8
waters agricultural
8

Similar Publications

Background: Contamination with crude oil and hydrocarbons has become a global threat. Such threats have urged us to invent solutions to deal with this dilemma. However, chemical treatment comes with limited benefits.

View Article and Find Full Text PDF

Background: Psoriasis is a chronic and incurable skin inflammation driven by an abnormal immune response. Our study aims to investigate the potential of interferon-γ (IFN-γ) primed mesenchymal stem cells (IMSCs) in targeting T cells to attenuate psoriasis-like inflammation, and to elucidate the underlying molecular mechanism involved.

Methods: Mesenchymal stem cells (MSCs) were isolated from the umbilical cord and identified based on their surface markers.

View Article and Find Full Text PDF

Zeolite coatings are studied as molecular sieves for membrane separation, membrane reactors, and chemical sensor applications. They are also studied as anticorrosive films for metals and alloys, antimicrobial and hydrophobic films for heating, ventilation, and air conditioning, and dielectrics for semiconductor applications. Zeolite coatings are synthesized by hydrothermal, ionothermal, and dry-gel conversion approaches, which require high process temperatures and lengthy times (ranging from hours to days).

View Article and Find Full Text PDF

Unlabelled: Metformin, a widely used antidiabetic drug, has become a growing concern due to its persistence in the environment. It is one of the most frequently detected pharmaceuticals in wastewater and surface water because it is excreted largely unchanged by patients and is not fully removed in conventional wastewater treatment plants. The present study focuses on the synthesis and characterization of BaFeO/poly(1-naphthylamine) (PNA) nanohybrids and their application as microwave-active catalysts for the degradation of metformin.

View Article and Find Full Text PDF

The escalating global problem of antibiotic contamination in wastewater demands innovative and sustainable remediation technologies. This paper presents a highly efficient photocatalytic material for water purification: a three-dimensional ultra-porous structure of interconnected GaN hollow microtetrapods (aero-GaN), its performance being further enhanced by noble metal nanodot functionalization. This novel aero-nanomaterial achieves more than 90 % of tetracycline degradation within 120 min under UV and solar irradiation, demonstrating its effectiveness in both static and dynamic flow conditions, with the potential for reuse and recyclability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!