The presence of pharmaceuticals and personal care products (PPCPs) in water remains a concern due to their potential threat to environmental and human health. Advanced oxidation processes (AOPs) have been receiving attention in water treatment studies to remove PPCPs. However, most studies have been focused on pure water containing a limited number of substances. In this study, the photocatalytic efficiency of commercially available titanium dioxide nanoparticles (P25) and P25 modified by silver nanoparticles (Ag-P25) were compared for their ability to degrade 23 target PPCPs (2 μg L) in realistic water matrices containing natural organic matter (Suwanee River NOM, 6.12 mg L). The experiments were completed under ultraviolet-light emitting diode (UV-LED) illumination at 365 and 405 nm wavelengths, with the latter representing visible light exposure. Under 365 nm UV-LED treatment, 99% of the PPCPs were removed using both P25 and Ag-P25 photocatalysts within 180 min of the treatment duration. The number of PPCPs removed dropped to 57% and 53% for P25 and Ag-P25 respectively under the 405 nm UV-LED irradiation. Dissolved organic carbon (DOC) and UV absorbance at 254 nm (UV254) measured at the end of the experiment indicated that the aromatic fraction of NOM was preferentially removed from the water matrix. Also, Ag-P25 was more effective in DOC removal than P25. The relationships of removal rate constants with physico-chemical properties of the substances were also determined. The molecular weight and charge were strongly associated with removal, with the former and the latter being positively and negatively correlated with the rate constants. The results of this work indicate that Ag-P25 is a promising photocatalyst to degrade persistent substances such as PPCPs and NOM even if they are present in a complex water matrix. The properties of individual substances can also be employed as an indication of their removal using this technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.142000 | DOI Listing |
Xenobiotica
January 2025
Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece.
Idiopathic Pulmonary Fibrosis (IPF) is a chronic respiratory disorder for which pirfenidone is the recommended first-line anti-fibrotic treatment. While pirfenidone has demonstrated efficacy in slowing the progression of IPF, its use is associated with several challenges and unresolved issues that impact patient outcomes. Pirfenidone administration can result in gastrointestinal side effects, photosensitivity reactions, and significant drug interactions, particularly in patients with hepatic impairment.
View Article and Find Full Text PDFPer Med
January 2025
Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Efforts have been made to leverage technology to accurately identify tumor characteristics and predict how each cancer patient may respond to medications. This involves collecting data from various sources such as genomic data, histological information, functional drug profiling, and drug metabolism using techniques like polymerase chain reaction, sanger sequencing, next-generation sequencing, fluorescence in situ hybridization, immunohistochemistry staining, patient-derived tumor xenograft models, patient-derived organoid models, and therapeutic drug monitoring. The utilization of diverse detection technologies in clinical practice has made "individualized treatment" possible, but the desired level of accuracy has not been fully attained yet.
View Article and Find Full Text PDFFront Allergy
December 2024
Respiratory Evaluation Sciences Program, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
Background: Infant antibiotic use is associated with increased risk of asthma. We examined the population impact of antibiotic exposure in the first year of life on the burden of pediatric asthma in British Columbia, Canada, using simulation modeling.
Methods: We performed a Bayesian meta-analysis of empirical studies to construct dose-response equations between antibiotic exposure in the first year of life and pediatric (<19 years of age) asthma.
Am J Med Open
December 2024
Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR.
Background: Studies examining racial and ethnic disparities in-hospital mortality for patients hospitalized with COVID-19 had mixed results. Findings from patients within academic medical centers (AMCs) are lacking, but important given the role of AMCs in improving health equity.
Objective: The purpose of this study is to assess whether minority patients hospitalized with COVID-19 in National COVID Cohort Collaborative (N3C) institutions, which consist predominantly of AMCs, have higher mortality rates relative to White patients.
Front Immunol
December 2024
Department of Neurology, Hanamaki General Hospital, Hanamaki, Japan.
International consensus guidance and Japanese clinical guidelines for myasthenia gravis (MG) recommend achieving minimal manifestations or better status (MM-or-better) as the severity component of the treatment goal. However, the subjective nature of determining MM can result in ambiguity regarding this category in clinical practice and clinical trials. This study analyzed severity metrics in a large number of MG patients to propose criteria for MM-or-better.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!