Non-enzymatic electrochemical sensors for the monitoring of reducing sugars in foods has great potential as a rapid in-situ detection method. This development involved the assembly of a nanoporous platinum structure on a screen-printed carbon electrode (SPCE). The modified electrode was then employed as an amperometric sensing element in a flow injection analysis (FIA) manifold. The system was successfully applied to the rapid detection of reducing sugars in potatoes, without the need for sample preparation. Optimal signals were achieved in phosphate buffer (pH 7.4) at a flow rate of 0.5 mL min and an applied potential of 0.6 V. Experimental results demonstrated the sensor's long-term stability and high selectivity for reducing sugars. This method provides high sample throughput due to a rapid response time of less than five seconds. Reducing sugar values determined were in good agreement with those recorded using a commercially available enzymatic assay kit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2020.127919 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!