Thiabendazole (TBZ) is extensively used in agriculture to control molds; residue of TBZ may pose a threat to humans. Herein, surface-enhanced Raman spectroscopy (SERS) coupled variable selected regression methods have been proposed as simple and rapid TBZ quantification technique. The nonlinear correlation between the TBZ and SERS data was first diagnosed by augmented partial residual plots method and calculated by runs test. Au@Ag NPs with strong enhancement factor (EF = 4.07 × 10) of Raman signal was used as SERS active material to collect spectra from TBZ. Subsequently, three nonlinear regression models were comparatively investigated and the competitive adaptive reweighted sampling-extreme learning machine (CARS-ELM) achieved a higher correlation coefficient (Rp = 0.9406) and the lower root-mean-square-error of prediction (RMSEP = 0.5233 mg/L). Finally, recoveries of TBZ in apple samples were 83.02-93.54% with relative standard deviation (RSD) value < 10%. Therefore, SERS coupled CARS-ELM could be employed as a rapid and sensitive approach for TBZ detection in Fuji apples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2020.127843 | DOI Listing |
Front Microbiol
January 2025
ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, University of Manouba, Ariana, Tunisia.
Thiabendazole (TBZ), a recalcitrant fungicide, is frequently applied in postharvest fruit treatment and generates significant volumes of industrial wastewater (WW) that conventional treatment plants cannot handle. This explores a bioelectrochemical system (BES) for TBZ degradation using Tunisian hypersaline sediments (THSs) as inoculum. Four sets of BES, along with biological controls, were tested using THS subjected to different levels of TBZ biostimulation.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Departamento de Medio Ambiente y Agronomía, INIA-CSIC, Carretera de A Coruña km. 7.5, 28040, Madrid, Spain. Electronic address:
Background: At present, 3D printing technology is becoming increasingly popular in analytical chemistry because it enables the rapid and cost-effective manufacture of sample preparation devices, particularly in flow-based operation, opening up new opportunities for the development of automated analytical methods. In parallel, the use of miniaturized methods and sustainable solvents in sample preparation is highly recommended. Accordingly, in this work, a 3D-printed millifluidic device was designed and used for the on-line natural deep eutectic solvent (NADES)-based liquid phase microextraction (LPME) coupled to a spectrofluorometer for, as a proof of concept, the determination of thiabendazole (TBZ) in fruit juice samples.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America.
Widespread anthelmintic resistance has complicated the management of parasitic nematodes. Resistance to the benzimidazole (BZ) drug class is nearly ubiquitous in many species and is associated with mutations in beta-tubulin genes. However, mutations in beta-tubulin alone do not fully explain all BZ resistance.
View Article and Find Full Text PDFVet Parasitol
January 2025
Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, Kosice 040 01, Slovakia.
The study aimed to conduct a survey on the occurrence of benzimidazole (BZ) resistance in strongyles by in vitro egg hatch test (EHT) and larval development test (LDT) and to identify the effective indicators of early resistance detection on horse farms with associated risk factors analysis appraisal. In total, 203 horses from 8 farms underwent the fecal sampling of which 77 horses were selected for in vitro testing. Simultaneously, 18 horses were chosen to analyse the results of in vitro tests compared to the in vivo fecal egg count reduction test (FECRT).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Centre for Ecological Dynamics in a Novel Biosphere, Section of EcoInformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus 8000, Denmark.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!