Purpose: To apply our convolutional neural network (CNN) algorithm to predict neoadjuvant chemotherapy (NAC) response using the I-SPY TRIAL breast MRI dataset.
Methods: From the I-SPY TRIAL breast MRI database, 131 patients from 9 institutions were successfully downloaded for analysis. First post-contrast MRI images were used for 3D segmentation using 3D slicer. Our CNN was implemented entirely of 3 × 3 convolutional kernels and linear layers. The convolutional kernels consisted of 6 residual layers, totaling 12 convolutional layers. Dropout with a 0.5 keep probability and L2 normalization was utilized. Training was implemented by using the Adam optimizer. A 5-fold cross validation was used for performance evaluation. Software code was written in Python using the TensorFlow module on a Linux workstation with one NVidia Titan X GPU.
Results: Of 131 patients, 40 patients achieved pCR following NAC (group 1) and 91 patients did not achieve pCR following NAC (group 2). Diagnostic accuracy of our CNN two classification model distinguishing patients with pCR vs non-pCR was 72.5 (SD ± 8.4), with sensitivity 65.5% (SD ± 28.1) and specificity of 78.9% (SD ± 15.2). The area under a ROC Curve (AUC) was 0.72 (SD ± 0.08).
Conclusion: It is feasible to use our CNN algorithm to predict NAC response in patients using a multi-institution dataset.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8111786 | PMC |
http://dx.doi.org/10.1016/j.mri.2020.08.021 | DOI Listing |
PLoS One
January 2025
Department of Electrical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
CNN is considered an efficient tool in brain image segmentation. However, neonatal brain images require specific methods due to their nature and structural differences from adult brain images. Hence, it is necessary to determine the optimal structure and parameters for these models to achieve the desired results.
View Article and Find Full Text PDFBiotechnol Bioeng
January 2025
State Key Laboratory of Bioreactor Engineering, Qingdao Innovation Institute of East China University of Science and Technology, East China University of Science and Technology, Shanghai, China.
High-performance strain and corresponding fermentation process are essential for achieving efficient biomanufacturing. However, conventional offline detection methods for products are cumbersome and less stable, hindering the "Test" module in the operation of "Design-Build-Test-Learn" cycle for strain screening and fermentation process optimization. This study proposed and validated an innovative research paradigm combining computer vision with deep learning to facilitate efficient strain selection and effective fermentation process optimization.
View Article and Find Full Text PDFPLoS One
January 2025
Automation School Guangdong University of Petrochemical Technology, Maoming, Guangdong, China.
Centrifugal compressors are widely used in the oil and natural gas industry for gas compression, reinjection, and transportation. Fault diagnosis and identification of centrifugal compressors are crucial. To promptly monitor abnormal changes in compressor data and trace the causes leading to these data anomalies, this paper proposes a security monitoring and root cause tracing method for compressor data anomalies.
View Article and Find Full Text PDFPLoS One
January 2025
Xinjiang Institute of Technology, Aksu, China.
Facial expression recognition faces great challenges due to factors such as face similarity, image quality, and age variation. Although various existing end-to-end Convolutional Neural Network (CNN) architectures have achieved good classification results in facial expression recognition tasks, these network architectures share a common drawback that the convolutional kernel can only compute the correlation between elements of a localized region when extracting expression features from an image. This leads to difficulties for the network to explore the relationship between all the elements that make up a complete expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!