Duchenne muscular dystrophy (DMD) is a debilitating disorder related to dystrophin encoding gene mutations, often associated with dilated cardiomyopathy. However, it is still unclear how dystrophin deficiency affects cardiac sarcomere remodeling and contractile dysfunction. We employed second harmonic generation (SHG) microscopy, a nonlinear optical imaging technique that allows studying contractile apparatus organization without histologic fixation and immunostaining. Images were acquired on alive DMD (mdx) and wild type cardiomyocytes at different ages and at various external calcium concentrations. An automated image processing was developed to identify individual myofibrils and extract data about their organization. We observed a structural aging-dependent remodeling in mdx cardiomyocytes affecting sarcomere sinuosity, orientation and length that could not be anticipated from standard optical imaging. These results revealed for the first time the interest of SHG to evaluate the intracellular and sarcomeric remodeling of DMD cardiac tissue in an age-dependent manner that could participate in progressive contractile dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nano.2020.102295DOI Listing

Publication Analysis

Top Keywords

second harmonic
8
harmonic generation
8
contractile dysfunction
8
optical imaging
8
internal structure
4
remodeling
4
structure remodeling
4
remodeling dystrophin-deficient
4
dystrophin-deficient cardiomyocytes
4
cardiomyocytes second
4

Similar Publications

Background: One of the most important surgical steps during thyroidectomy is the safe ligation of vessels. In fact, it is crucial to avoid postoperative bleeding and nerves' injury. The "clamp and tie" technique was first introduced in the 19th century.

View Article and Find Full Text PDF

Advances in Imaging of Traumatic Nerve Injuries.

J Am Acad Orthop Surg

December 2024

From the Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT (Graesser), the Washington University School of Medicine in St. Louis, Mallinckrodt Institute of Radiology, St. Louis, MO (Parsons), and the Department of Orthopaedic Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO (Olafsen, Dy, and Brogan).

Traumatic peripheral nerve injuries represent a spectrum of conditions and remain challenging to diagnose and prognosticate. High-resolution ultrasonography and magnetic resonance neurography have emerged as useful diagnostic modalities in the evaluation of traumatic peripheral nerve and brachial plexus injuries. Ultrasonography is noninvasive, is able to rapidly interrogate large areas and multiple nerves, allows for a dynamic assessment of nerves and their surrounding anatomy, and is cost-effective.

View Article and Find Full Text PDF

Background/objectives: The coronavirus disease (COVID-19) pandemic has significantly impacted global health, with Malaysia reporting over 5 million cases as of May 2024. While symptoms like fatigue and breathlessness are commonly reported among COVID-19 patients, limited research exists on the vocal and pulmonary conditions of individuals with long COVID symptoms. This study aims to assess vocal impairments and pulmonary function differences between long COVID patients and healthy controls, addressing gaps in understanding how long COVID affects vocal and respiratory health.

View Article and Find Full Text PDF

Purpose: Parkinson disease (PD) is a progressive neurodegenerative disease. The aim of this study is to investigate the association between acoustic and cortical brain features in Parkinson's disease patients.

Methods: We recruited 19 (eight females, 11 males) Parkinson's disease patients and 19 (eight females, 11 males) healthy subjects to participate in the experiment.

View Article and Find Full Text PDF

Absence of High-Pressure Ground-State Reentrant Ferroelectricity in PbTiO_{3}.

Phys Rev Lett

December 2024

Departments of Physics, Chemistry, and Earth and Environmental Sciences, University of Illinois Chicago, Chicago, Illinois 60607, USA.

We study ferroelectricity in the classic perovskite ferroelectric PbTiO_{3} to high pressures with density functional theory (DFT) and experimental diamond-anvil techniques. We use second harmonic generation spectroscopy to detect lack of inversion symmetry. Consistent with early understanding and experiments, we find that ferroelectricity disappears at moderate pressures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!