Pathologic examination of clinical tissue samples is time consuming and often does not involve the comprehensive analysis of the whole specimen. Automated tissue analysis systems have potential to make the workflow of a pathologist more efficient and to support in clinical decision-making. So far, these systems have been based on application of mass spectrometry imaging (MSI). MSI provides high fidelity and the results in tissue identification are promising. However, the high cost and need for maintenance limit the adoption of MSI in the clinical setting. Thus, there is a need for new innovations in the field of pathological tissue imaging. In this study, we show that differential ion mobility spectrometry (DMS) is a viable option in tissue imaging. We demonstrate that a DMS-driven solution performs with up to 92% accuracy in differentiating between two grossly distinct animal tissues. In addition, our model is able to classify the correct tissue with 81% accuracy in an eight-class setting. The DMS-based system is a significant innovation in a field dominated by mass-spectrometry-based solutions. By developing the presented platform further, DMS technology could be a cost-effective and helpful tool for automated pathological analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexmp.2020.104526 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!