Photosynthetic responses of Arabidopsis to SO were related to photosynthetic pigments, photosynthesis gene expression and redox regulation.

Ecotoxicol Environ Saf

School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi Province, China. Electronic address:

Published: October 2020

Sulfur dioxide (SO) is one of the most common and harmful air pollutants. High concentrations of SO can induce a series of defensive responses in Arabidopsis plants. However, the role of photosynthesis in the plant response to SO stress is not clear. Here, we report the photosynthetic responses of Arabidopsis plants to SO stress. Exposure to 30 mg/m SO decreased stomatal conductance (Gs) and transpiration rate (Tr) but increased photosynthetic pigments and net photosynthetic rate (Pn). The contents of carbohydrates and sucrose were not altered. The transcript levels of most genes related to photosystem II (PSII), cytochrome b6/f (Cytb6f), photosystem I (PSI) and carbon fixation were upregulated, revealing one important regulatory circuit for the maintenance of chloroplast homeostasis under SO stress. Exposure to SO triggered reactive oxygen species (ROS) generation, accompanied by increases in superoxide dismutase (SOD) activity and the contents of cysteine (Cys), glutathione (GSH) and non-protein thiol (NPT), which maintained cellular redox homeostasis. Together, our results indicated that chloroplast photosynthesis was involved in the plant response to SO stress. The photosynthetic responses were related to photosynthetic pigments, photosynthesis gene expression and redox regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.111019DOI Listing

Publication Analysis

Top Keywords

photosynthetic responses
12
responses arabidopsis
12
photosynthetic pigments
12
pigments photosynthesis
8
photosynthesis gene
8
gene expression
8
expression redox
8
redox regulation
8
arabidopsis plants
8
plant response
8

Similar Publications

Both, Serendipita indica and AMF, show promise as sustainable biofertilizers for reforestation, improving nutrient uptake and stress tolerance, despite contrasting effects on photosynthetic capacity and biomass allocation. Reclaiming degraded areas is essential for biodiversity conservation and enhancing ecosystem services enhancement, especially when using native species. This study investigated Schinus terebinthifolius Raddi, a native Brazilian species, and its compatibility with plant growth-promoting microorganisms (PGPM), including an endophytic fungus (Serendipita indica) and a consortium of arbuscular mycorrhizal fungi (AMF), to identify effective strategies for reforestation in nutrient-poor environments.

View Article and Find Full Text PDF

FvPHR1 Improves the Quality of Woodland Strawberry Fruit by Up-Regulating the Expression of FvPHT1;7 and FvSWEET9.

Plant Cell Environ

January 2025

Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning province, China.

Article Synopsis
  • Phosphorus is crucial for plant growth, but excessive fertilizer use can lead to environmental issues; plants manage phosphate supply through intricate signaling pathways.
  • The study focused on the role of PHR1 in Fragaria vesca (strawberries), showing that overexpressing the FvPHR1 gene enhances phosphate uptake and photosynthesis efficiency by activating specific downstream genes.
  • FvPHR1 also aids in sugar transport from leaves to fruit, suggesting its complex role in improving strawberry fruit quality and providing insights for developing better cultivars with efficient phosphorus utilization and higher sugar content.
View Article and Find Full Text PDF

This study examined the impacts of different LED spectra on the growth of in vitro cultures of Musa acuminata cv. red banana and their biochemical profile, including the antioxidant enzymes catalase and ascorbate peroxidase, photosynthetic pigment and accumulation of total carbohydrate content. The far-red LEDs significantly increase shoot elongation (10.

View Article and Find Full Text PDF

The present study was designed to highlight the ameliorative role of iron nanoparticles (FeNPs) against drought stress in spinach (Spinacia oleracea L.) plants. A pot experiment was performed in two-way completely randomize design with three replicates.

View Article and Find Full Text PDF

Coral reefs worldwide are threatened by increasing ocean temperatures because of the sensitivity of the coral-algal symbiosis to thermal stress. Reef-building corals form symbiotic relationships with dinoflagellates (family Symbiodiniaceae), including those species which acquire their initial symbiont complement predominately from their parents. Changes in the composition of symbiont communities, through the mechanisms of symbiont shuffling or switching, can modulate the host's thermal limits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!