The inclusion of interstimulus interval variability does not mitigate electrically-evoked fatigue of the knee extensors.

Eur J Appl Physiol

School of Health and Exercise Sciences, Faculty of Health and Social Development, The University of British Columbia, Okanagan Campus, 133-1147 Research Road, Kelowna, BC, V1V 1V7, Canada.

Published: December 2020

Purpose: Transcutaneous electrical stimulation (TES) is used to activate muscles when volitional capacity is impaired but potential benefits are limited by rapid force loss (fatigue). Most TES fatigue protocols employ constant-frequency trains, with stimuli at a fixed interstimulus interval (ISI); however, a brief ISI between the first two pulses (variable-frequency train, VFT) to maximize the catchlike property of muscle can attenuate fatigue development. The purpose of this study was to investigate if a VFT that simulates intrinsic variability of voluntary motor unit discharge rates would also mitigate fatigue, owing to the sensitivity of muscle to acute activation history.

Methods: On two visits, 24 healthy adults (25.3 ± 3.7 years; 12 females) received 3 min of intermittent TES to the quadriceps of the dominant leg. Trains of eight pulses at 10 Hz were delivered with a constant (100 ms) or variable ISI (80-120 ms). Contractile impulse, rate of force development (RFD), and rate of relaxation (RFR) were determined for each tetanus RESULTS: During fatigue and recovery, contractile impulse did not differ between protocols (p ≥ 0.796) and sexes (p ≥ 0.493), with values of 77 ± 17% control at task end and 125 ± 19% control 2 min later. RFD and RFR also showed no effect of the protocol (p ≥ 0.310) or participant sex (p ≥ 0.119). Both measures slowed (38 ± 23% and 33 ± 22%, respectively) but dissociated during recovery as RFD remained 16 ± 18% below control at 5 min, whereas RFR recovered to control by 30 s (101 ± 22%).

Conclusion: Contrary to expectations, the VFT protocol did not attenuate fatigue development, which suggests no benefit to mimicking the inherent variability of motor unit discharge rates.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00421-020-04485-4DOI Listing

Publication Analysis

Top Keywords

interstimulus interval
8
attenuate fatigue
8
fatigue development
8
motor unit
8
unit discharge
8
discharge rates
8
contractile impulse
8
fatigue
7
inclusion interstimulus
4
interval variability
4

Similar Publications

The N1 auditory evoked potential amplitude depends heavily on the inter-stimulus interval (ISI). Typically, shorter ISIs result in reduced N1 amplitudes, suggesting a decreased neural response with high stimulus presentation rates. However, an exception known as N1 facilitation occurs with very brief ISIs (∼150-500 ms), where the N1 amplitude increases.

View Article and Find Full Text PDF
Article Synopsis
  • A new technique called high-PAS combines high-frequency peripheral nerve stimulation (PNS) and high-intensity transcranial magnetic stimulation (TMS) to potentially enhance motor function in patients with incomplete spinal cord injuries.
  • The interstimulus interval (ISI) in high-PAS allows for flexibility, making it easier to implement in clinical settings where precise timing is tough, but this also creates challenges for measuring its effectiveness.
  • Research with ten healthy participants showed that high-PAS improved motor-evoked potentials (MEPs) and significantly increased spinal excitability (measured by H-reflex amplitudes) during spinal-targeted sessions, but not in cortical-targeted sessions.
View Article and Find Full Text PDF

Introduction: Lumbar transcutaneous spinal cord stimulation (TSS) evokes synchronized muscle responses, termed spinally evoked motor response (sEMR). Whether the structures TSS activates to evoke sEMRs differ when TSS intensity and waveform are varied is unknown.

Methods: In 15 participants (9F:6M), sEMRs were evoked by TSS over L1-L3 (at sEMR threshold and suprathreshold intensities) using conventional (one 400-µs biphasic pulse) or high-frequency burst (ten 40-µs biphasic pulses at 10 kHz) stimulus waveforms in vastus medialis (VM), tibialis anterior (TA) and medial gastrocnemius (MG) muscles.

View Article and Find Full Text PDF

Interaural time differences are often considered a weak cue for stream segregation. We investigated this claim with headphone-presented pure tones differing in a related form of interaural configuration-interaural phase differences (ΔIPD)-or/and in frequency (ΔF). In experiment 1, sequences comprised 5 × ABA- repetitions (A and B = 80-ms tones, "-" = 160-ms silence), and listeners reported whether integration or segregation was heard.

View Article and Find Full Text PDF

Neurophysiological assessment of cortical motor function: A direct comparison of methodologies.

Clin Neurophysiol

December 2024

Neuroscience Research Australia, 139 Barker Street, Randwick, 2031, Sydney, Australia; University of NSW and Department of Neurology, Prince of Wales Hospital, South Eastern Sydney Area Health Service, Sydney, Australia.

Objective: Assessment of cortical function with threshold tracking transcranial magnetic stimulation (TT-TMS) has developed as a biomarker to inform disease pathophysiology, particularly in neurodegenerative disease and dementia. At present, a fully integrated testing system does not exist. To advance clinical utility, and to streamline software design to integrate with diagnostic approaches in an outpatient setting, the present series of studies assessed the effects of altering diagnostic paradigms to measure interstimulus interval (ISI) including serial ascending [T-SICIs] and parallel [T-SICIp] methodologies as measures of cortical motor function (the MagXite software).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!