Chitosan nanoparticles have gained attention as drug delivery systems (DDS) in the medical field as they are both biodegradable and biocompatible with reported antimicrobial and anti-leishmanial activities. We investigated the application of chitosan nanoparticles as a DDS for the treatment of cutaneous leishmaniasis (CL) by preparing two types of chitosan nanoparticles: positively charged with tripolyphosphate sodium (TPP) and negatively charged with dextran sulphate. Amphotericin B (AmB) was incorporated into these nanoparticles. Both types of AmB-loaded nanoparticles demonstrated in vitro activity against intracellular amastigotes, with similar activity to unencapsulated AmB, but with a significant lower toxicity to KB-cells and red blood cells. In murine models of CL caused by intravenous administration of AmB-loaded chitosan-TPP nanoparticles (Size = 69 ± 8 nm, Zeta potential = 25.5 ± 1 mV, 5 mg/kg/for 10 days on alternate days) showed a significantly higher efficacy than AmBisome (10 mg/kg/for 10 days on alternate days) in terms of reduction of lesion size and parasite load (measured by both bioluminescence and qPCR). Poor drug permeation into and through mouse skin, using Franz diffusion cells, showed that AmB-loaded chitosan nanoparticles are not appropriate candidates for topical treatment of CL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7504813PMC
http://dx.doi.org/10.3390/molecules25174002DOI Listing

Publication Analysis

Top Keywords

chitosan nanoparticles
20
nanoparticles
8
cutaneous leishmaniasis
8
mg/kg/for days
8
days alternate
8
alternate days
8
chitosan
5
activity amphotericin
4
amphotericin b-loaded
4
b-loaded chitosan
4

Similar Publications

: is the leading cause of chronic gastritis, peptic ulcer, gastric adenocarcinoma, and mucosal-associated lymphoma. Due to the emerging problems with antibiotic treatment against in clinical practice, vaccination has gained more interest. Oral immunization is considered a promising approach for preventing initial colonization of this bacterium in the gastrointestinal tract, establishing a first line of defense at gastric mucosal surfaces.

View Article and Find Full Text PDF

Liver cancer is a prevalent form of carcinoma worldwide. A novel chitosan-coated optimized formulation capped with irradiated silver nanoparticles (INops) was fabricated to boost the anti-malignant impact of rosuvastatin calcium (RC). Using a 2-factorial design, eight formulations were produced using the solvent evaporation process.

View Article and Find Full Text PDF

The necessity to mitigate the intrinsic issues associated with tissue or organ transplants, in order to address the rising prevalence of diseases attributable to increased life expectancy, provides a rationale for the pursuit of innovation in the field of biomaterials. Specifically, biopolymeric aerogels represent a significant advancement in the field of tissue engineering, offering a promising solution for the formation of temporary porous matrices that can replace damaged tissues. However, the functional characteristics of these materials are inadequate, necessitating the implementation of matrix reinforcement methods to enhance their performance.

View Article and Find Full Text PDF

Histology Assessment of Chitosan-Polyvinyl Alcohol Scaffolds Incorporated with CaO Nanoparticles.

Molecules

January 2025

Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 760001, Colombia.

Scaffolds for regenerative therapy can be made from natural or synthetic polymers, each offering distinct benefits. Natural biopolymers like chitosan (CS) are biocompatible and biodegradable, supporting cell interactions, but lack mechanical strength. Synthetic polymers like polyvinyl alcohol (PVA) provide superior mechanical strength and cost efficiency but are not biodegradable or supportive of cell adhesion.

View Article and Find Full Text PDF

Chitosan Micro/Nanocapsules in Action: Linking Design, Production, and Therapeutic Application.

Molecules

January 2025

Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain.

pH sensitivity of chitosan allows for precise phase transitions in acidic environments, controlling swelling and shrinking, making chitosan suitable for drug delivery systems. pH transitions are modulated by the presence of cross-linkers by the functionalization of the chitosan chain. This review relays a summary of chitosan functionalization and tailoring to optimize drug release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!