Synthesis and characterization of composite shear thickening fluids (STFs) containing carbon nanofillers are presented. Shear thickening fluids have attracted particular scientific and technological interest due to their unique ability to abruptly increase viscosity in the case of a sudden impact. The fluids have been developed as a potential component of products with high energy absorbing efficiency. This study reports on the rheological behavior, stability, and microstructure of the STFs modified with the following carbon nanofillers: multi-walled carbon nanotubes, reduced graphene oxide, graphene oxide, and carbon black. In the current experiment, the basic STF was made as a suspension of silica particles with a diameter of 500 nm in polypropylene glycol and with a molar mass of 2000 g/mol. The STF was modified with carbon nanofillers in the following proportions: 0.05, 0.15, and 0.25 vol.%. The addition of the carbon nanofillers modified the rheological behavior and impact absorption ability; for the STF containing 0.25 vol.% of carbon nanotubes, an increase of force absorption up to 12% was observed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7504572 | PMC |
http://dx.doi.org/10.3390/ma13173870 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!