This research reports on the development of a method to identify and quantify fungal biomass based on ergosterol autofluorescence using excitation-emission matrix (EEM) measurements. In the first stage of this work, several ergosterol extraction methods were evaluated by APCI-MS, where the ultrasound-assisted procedure showed the best results. Following an experimental design, various quantities of the dried mycelium of the fungus Schizophyllum commune were mixed with the starchy solid residue (BBR) from the babassu (Orbignya sp.) oil industry, and these samples were subjected to several ergosterol extraction methods. The EEM spectral data of the samples were subjected to Principal Component Analysis (PCA), which showed the possibility to qualitatively evaluate the presence of ergosterol in the samples by ergosterol autofluorescence without the addition of any reagent. In order to assess the feasibility of quantifying fungal biomass using ergosterol autofluorescence, the EEM spectral data and known amounts of fungal biomass were modeled using partial least squares (PLS) regression and a procedure of backward selection of predictors (AutoPLS) was applied to select the Excitation-Emission wavelength pairs that provide the lowest prediction error. The results revealed that the amount of fungal biomass in samples containing interfering substances (BBR) can be accurately predicted with RCV = 0.939, RP = 0.936, RPDcv = 4.07, RPDp = 4.06, RMSECV = 0.0731 and RMSEP = 0.0797. In order to obtain an easy-to-understand equation that expresses the relationship between fungal biomass and fluorescence intensity, multiple linear regression (MLR) was applied to the VIP variables selected by the AutoPLS method. The MLR model selected only 2 variables and showed a very good performance, with RCV = 0.862, RP = 0.809, RPDcv = 2.18, RPDp = 2.35, RMSECV = 0.137 and RMSEP = 0.138. This study demonstrated that ergosterol autofluorescence can be successfully used to quantify fungal biomass even when mixed with agroindustrial residues, in this case BBR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2020.121238DOI Listing

Publication Analysis

Top Keywords

fungal biomass
28
ergosterol autofluorescence
20
ergosterol
8
biomass ergosterol
8
quantify fungal
8
ergosterol extraction
8
extraction methods
8
samples subjected
8
eem spectral
8
spectral data
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!