Porous microstructure materials are considered good candidates for the development of highly sensitive and fast humidity sensors. In this regard, we prepared polyaniline (PANI) decorated Cu-ZnS porous microsphere structures (PMSs) for the fabrication of humidity sensors. PANI coated Cu-ZnS PMSs were synthesized by a hydrothermal method and in situ polymerization process. The synthesized PMSs were characterized by different techniques to study the structural, morphological and surface absorption properties. Several compositions for the PANI/Cu-ZnS PMS were investigated, which were then compared with pure PANI. The experimental observations demonstrate that a PANI/1%Cu-ZnS PMS has better sensitivity, fast response and good stability compared to pure PANI and other PANI/CuZnS compositions. Finally, a PANI/1% Cu-ZnS PMS was found to be optimized for humidity sensors due to its well distributed roughness, porosity and hydrophilicity. The average response and recovery times for PANI/1% Cu-ZnS were found to be 42 s and 24 s, respectively, which outperform recent results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2020.121361 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!