Curcumin may reverse 5-fluorouracil resistance on colonic cancer cells by regulating TET1-NKD-Wnt signal pathway to inhibit the EMT progress.

Biomed Pharmacother

Department of Integrated Chinese and Western Medicine, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences; Key laboratory of Integrated Traditional Chinese and Western Medicine, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No. 1 Banshandong Road, Gongshu District, Hangzhou, Zhejiang Province. Electronic address:

Published: September 2020

Background And Purpose: Colorectal cancer is a kind of gastrointestinal tumor with rising morbidity and mortality. 5-fluorouracil is one of the most effective chemotherapy drugs for the treatment of CRC. However, clinical data reported dramatic resistance on the treatment for CRC with 5-fluorouracil. Present study aims to explore the anti-resistant effect of curcumin and its mechanism.

Methods: MTT assay was used to evaluate the proliferation of rHCT-116 cells. Flow cytometry was used to determine the apoptosis and cell cycle of rHCT-116 cells. Western Blot was performed to detect the expression level of TET1, NKD2, E-cadherin, Vimentin, β-catenin, TCF4 and Axin in transfected rHCT-116 cells.

Results: 5-fluorouracil resistant HCT-116 cells were successfully established. Curcumin was found to be effective in the inhibition of proliferation, inducement of apoptosis and block of G0/G1 phase on 5-fluorouracil treated HCT-116 cells. The expression of TET1 and NKD2 was greatly inhibited by high dosage of curcumin. The WNT signal pathway and EMT progress were suppressed in rHCT-116 cells by high dosage of curcumin. The inhibitory effects of curcumin on WNT signal pathway and EMT progress were verified to be consistent with Pax-6, TET1 and NKD2.

Conclusion: Curcumin might exert anti-resistant effect of 5-FU on HCT-116 cells by regulating the TET1-NKD2-WNT signal pathway to inhibit the EMT progress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2020.110381DOI Listing

Publication Analysis

Top Keywords

signal pathway
16
emt progress
16
rhct-116 cells
12
hct-116 cells
12
cells regulating
8
pathway inhibit
8
inhibit emt
8
treatment crc
8
tet1 nkd2
8
high dosage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!