In this study, two iron-based metal-organic framework compounds (MOFs), were used and compared as catalysts for persulfate (PS) activation to degrade bisphenol F (BPF). The outstanding advantage of using amino-functionalized MOFs in the catalytic system was verified under different reaction conditions, and the mechanism was explored. The results indicated that NH-MIL-101(Fe)/PS system not only had a wide pH application range, but also possessed an excellent catalytic performance towards interference from the coexisting anions and humic acid. Density functional theory (DFT) calculations showed that, compared with MIL-101(Fe), the -NH modification could significantly improve the electronic conductivity of NH-MIL-101(Fe) by enhancing its Fermi level (-4.28 eV) and binding energy to PS (-1.19 eV). The free radical quenching experiments were combined with electron paramagnetic resonance (EPR) confirmed that free radicals (SO, OH, O) worked together with the non-radical (O) reaction to remove 91% BPF within 40 min in the NH-MIL-101(Fe)/PS system. The two proposed BPF degradation pathway were related to hydroxylation, oxidation and ring cracking. The toxicity of the BPF degradation intermediates as well as its final products were also evaluated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.140464 | DOI Listing |
Environ Res
January 2025
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou 450001, China.
Given the environmental and ecological risks posed by wastewater bearing Mo, the characteristics and microscopic interactions of existing silica-based adsorbents have not been thoroughly investigated, highlighting the need to enhance the porosity and chemical interactions of these materials. Considering the effectiveness of amino groups in binding metal oxyanions, this study investigates the adsorption performance and mechanism of amino-functionalized MCM-41 for Mo(VI), with the goal of efficiently remediating Mo-contaminated wastewater. MCM-41 modified by amino group retains its original structure and mesoporous characteristics while featuring a positively charged surface and chemically bonded amino groups.
View Article and Find Full Text PDFMikrochim Acta
December 2024
State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Henan Polytechnic University, Jiaozuo, 454000, China.
A HPU-23@Ru@Tb-NH sensor array with light-driven oxidase-mimicking activity and triple-emission fluorescence was developed. It was composed of a Tb-functionalized metal organic framework and Ru(bpy) and applied to the simultaneous detection of Hg, ClO, and PO via differently responsive channels. HPU-23@Ru@Tb-NH had a photoresponsive colorimetric response toward Hg with a LOD as low as 4.
View Article and Find Full Text PDFFood Chem X
December 2024
Hangzhou Medical College, School of Laboratory Medicine and Bioengineering, Hangzhou, 310053, China, Zhejiang 311300, China.
Macromol Rapid Commun
December 2024
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
Integration of hydrophobic and antibacterial functionalities into polyester-cotton blended (PTCO) textiles has attracted more attention but remains a challenge. Here, a Janus fabric with antibacterial effect, hydrophobicity, and enhanced moisture-permeability is fabricated using a "mist polymerization" approach. The PET fibers in the PTCO fabric are amino-functionalized through ammonolysis reactions of PET molecules with HDA, and mist treatments of poly lauryl methacrylate (PLMA) and poly(DMC-co-MA) (PDM) are applied on the two side surfaces of the PTCO-HDA fabric, respectively.
View Article and Find Full Text PDFJ Fluoresc
August 2024
College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!