A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Repair bond strength of dental computer-aided design/computer-aided manufactured ceramics after different surface treatments. | LitMetric

Objective: To evaluate the microtensile bond strength of four dental computer-aided design/computer-aided manufactured (CAD/CAM) ceramics after application of four different surface treatments.

Materials And Methods: Four dental CAD/CAM ceramics were tested: feldspathic ceramic (VITABLOCKS-Mark II), polymer-infiltrated ceramic network (VITA ENAMIC), zirconia-reinforced lithium silicate (VITA SUPRINITY), and yttria-stabilized zirconia (VITA YZ T). Four surface treatments were applied: no treatment, 5% hydrofluoric acid-etching, airborne particle abrasion, and tribochemical silica coating. The ceramic blocks were repaired with nanohybrid composite (Tetric N-Collection). Sixteen test groups of 12 specimens were prepared. After thermocycling, microtensile bond testing was performed. The microtensile strengths values were statistically analyzed using two-way analysis of variance and Tukey's post-hoc test.

Results: Repaired feldspathic and resin polymer-infiltrated ceramic network ceramics demonstrated superior microtensile bond strengths compared to zirconia-reinforced lithium silicate and yttria-stabilized zirconia. Etched feldspathic and polymer-infiltrated ceramic network ceramics had higher bond strength than the untreated groups. Surface treatments did not affect the bond strength of zirconia-reinforced lithium silicate and yttria-stabilized zirconia with the exception of etching, which reduced the bond strength of yttria-stabilized zirconia.

Conclusion: Feldspathic ceramic and polymer-infiltrated ceramic network were repaired with dental composite after surface etching with hydrofluoric acid. Repair of zirconia-reinforced lithium silicate and yttria-stabilized zirconia did not demonstrate promising results.

Clinical Significance: Repair of feldspathic ceramic and polymer-infiltrated ceramic network restorations may be a cost-effective means to promote the longevity of dental restorations. However, zirconia and zirconia-reinforced lithium disilicate restorations do not offer such an option.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jerd.12635DOI Listing

Publication Analysis

Top Keywords

bond strength
20
polymer-infiltrated ceramic
20
ceramic network
20
zirconia-reinforced lithium
20
lithium silicate
16
yttria-stabilized zirconia
16
surface treatments
12
microtensile bond
12
feldspathic ceramic
12
silicate yttria-stabilized
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!