Key Points: Fasting can increase motivation for food and can energize reward-seeking. Ventral tegmental area (VTA) dopamine neurons respond to motivationally relevant information and fasting can influence mesolimbic dopamine concentration. An acute overnight fast differentially alters food approach behaviours and excitatory synaptic transmission onto VTA dopamine neurons of male or female mice. While inhibitory synapses onto VTA dopamine neurons are not altered by fasting in male or female mice, male mice had strengthened excitatory synapses whereas female mice had increased endocannabinoid-mediated short-term plasticity at excitatory synapses. These results help us understand how fasting differentially influences excitatory synaptic transmission onto dopamine neurons and may inform different strategies for fasting-induced food seeking by male and female mice.
Abstract: Dopamine neurons in the ventral tegmental area (VTA) are important for energizing goal-directed behaviour towards food and are sensitive to changes in metabolic states. Fasting increases the incentive motivation for food and the mobilization of energy stores and has sex-dependent effects. However, it is unknown how acute fasting alters excitatory or inhibitory synaptic transmission onto VTA dopamine neurons. An acute 16 h overnight fast induced increased food-seeking behaviour that was more predominant in male mice. Fasting increased miniature excitatory postsynaptic current frequency and amplitude in male, but not female, mice. This effect was not due to altered release probability as there was no change in the paired pulse ratio, nor was it due to an altered postsynaptic response as there was no change in the AMPA receptor/NMDA receptor ratio or response to glutamate uncaging. However, this effect was consistent with an increase in the number of release sites. In addition, depolarization-induced suppression of excitation, a measure of short-term endocannabinoid-mediated plasticity, was enhanced in female but not male fasted mice. There were no fasting-induced changes at inhibitory synapses onto dopamine neurons of male or female mice. Taken together, these results demonstrate that fasting influences excitatory synapses differentially in male and female mice, but preserves inhibitory synapses onto dopamine neurons, indicating that the mesolimbic circuits of male and female mice respond differently to acute energy deprivation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1113/JP280412 | DOI Listing |
Sci Rep
December 2024
Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, P. R. China.
Dopamine (DA) plays important roles in various behaviors, including learning and motivation. Recently, THOC5 was identified as an important regulator in the development of dopaminergic neurons. However, how THOC5 is regulated has not been explored.
View Article and Find Full Text PDFNat Commun
December 2024
Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan.
Taking advantage of the good mechanical strength of expanded Drosophila brains and to tackle their relatively large size that can complicate imaging, we apply potassium (poly)acrylate-based hydrogels for expansion microscopy (ExM), resulting in a 40x plus increased resolution of transgenic fluorescent proteins preserved by glutaraldehyde fixation in the nervous system. Large-volume ExM is realized by using an axicon-based Bessel lightsheet microscope, featuring gentle multi-color fluorophore excitation and intrinsic optical sectioning capability, enabling visualization of Tm5a neurites and L3 lamina neurons with photoreceptors in the optic lobe. We also image nanometer-sized dopaminergic neurons across the same intact iteratively expanded Drosophila brain, enabling us to measure the 3D expansion ratio.
View Article and Find Full Text PDFJ Neurosci Res
January 2025
Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico.
Lateralization of motor behavior, a common phenomenon in humans and several species, is modulated by the basal ganglia, a site pointed out for the interhemispheric differences related to lateralization. Our study aims to shed light on the potential role of the striatonigral D1 receptor in functional asymmetry in normal conditions through neurochemical and behavioral means. We found that D1 receptor activation and D1/D3 receptor coactivation in striatonigral neurons leads to more cAMP production by adenylyl cyclase in the striatum and GABA release in their terminals in the right hemisphere compared to the left.
View Article and Find Full Text PDFArch Razi Inst
June 2024
Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
In the present study, the mechanisms involved in scopolamine-induced memory impairment have been investigated. The molecular events that take place during memory mostly include mechanisms that are seen in the acquisition phase. Results showed that one of the mechanisms of memory destruction caused by scopolamine, in addition to weakening the cholinergic system, is the indirect effect of scopolamine on other neurotransmitter systems, including the glutamatergic system.
View Article and Find Full Text PDFFront Neuroanat
December 2024
Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
Parkinson's disease (PD) is a neurodegenerative condition characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) of the brain, manifesting itself with both motor and non-motor symptoms. A critical element of this pathology is neuroinflammation, which triggers a harmful neurotoxic cycle, exacerbating cell death within the central nervous system. AD-16 (also known as GIBH-130) is a recently identified compound capable of reducing the expression of pro-inflammatory cytokines while increasing the expression of anti-inflammatory cytokines in Alzheimer's disease models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!