β- and γ-herpesviruses include the oncogenic human viruses Kaposi's sarcoma-associated virus (KSHV) and Epstein-Barr virus (EBV), and human cytomegalovirus (HCMV), which is a significant cause of congenital disease. Near the end of their replication cycle, these viruses transcribe their late genes in a manner distinct from host transcription. Late gene transcription requires six virally encoded proteins, one of which is a functional mimic of host TATA-box-binding protein (TBP) that is also involved in recruitment of RNA polymerase II (Pol II) via unknown mechanisms. Here, we applied biochemical protein interaction studies together with electron microscopy-based imaging of a reconstituted human preinitiation complex to define the mechanism underlying Pol II recruitment. These data revealed that the herpesviral TBP, encoded by ORF24 in KSHV, makes a direct protein-protein contact with the C-terminal domain of host RNA polymerase II (Pol II), which is a unique feature that functionally distinguishes viral from cellular TBP. The interaction is mediated by the N-terminal domain (NTD) of ORF24 through a conserved motif that is shared in its β- and γ-herpesvirus homologs. Thus, these herpesviruses employ an unprecedented strategy in eukaryotic transcription, wherein promoter recognition and polymerase recruitment are facilitated by a single transcriptional activator with functionally distinct domains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7498053 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1008843 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!