The biological light-harvesting process offers an unlimited source of inspiration. The high level of control, adaptation capability, and efficiency challenge humankind to create artificial biomimicking nanoarchitectures with the same performances to respond to our energy needs. Here, in the extensive search for design principles at the base of efficient artificial light harvesters, an approach based on self-assembly of pigment-peptide conjugates is proposed. The solvent-driven and controlled aggregation of the peptide moieties promotes the formation of a dense network of interacting pigments, giving rise to an excitonic network characterized by intense and spectrally wide absorption bands. The ultrafast dynamics of the nanosystems studied through two-dimensional electronic spectroscopy reveals that the excitation energy is funneled in an ultrafast time range (hundreds of femtoseconds) to a manifold of long-living dark states, thus suggesting the considerable potentiality of the systems as efficient harvesters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8011917PMC
http://dx.doi.org/10.1021/acs.jpclett.0c02138DOI Listing

Publication Analysis

Top Keywords

biomimetic nanoarchitectures
4
nanoarchitectures light
4
light harvesting
4
harvesting self-assembly
4
self-assembly pyropheophorbide-peptide
4
pyropheophorbide-peptide conjugates
4
conjugates biological
4
biological light-harvesting
4
light-harvesting process
4
process offers
4

Similar Publications

Living microorganisms can perform directed migration for foraging in response to a chemoattractant gradient. We report a biomimetic strategy that rotary FF-ATPase (adenosine triphosphatase)-propelled flasklike colloidal motors exhibit positive chemotaxis resembling the chemotactic behavior of bacteria. The streamlined flasklike colloidal particles are fabricated through polymerization, expansion, surface rupture, and re-polymerizing nanoemulsions composed of triblock copolymers and ribose.

View Article and Find Full Text PDF

Spatially ordered immobilization of cascade enzymes for the construction of a robust colorimetric hydrogel sensor.

Biosens Bioelectron

February 2025

College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China. Electronic address:

The development of a suitable mimetic scaffolds for maintaining high activity and stability of co-immobilized multi-enzymes is a key challenge in biotechnology. Herein, we achieved the regular distribution of cascade enzymes through spatially controlled hierarchical loading into protein-inorganic hybrid nanoflowers using a mild biomineralization technique. The comprehensive understanding of sequential regulation in constructing controlled nanoarchitecture enables to combine a continuous reaction and achieve tailoring catalysis for biomimetic application.

View Article and Find Full Text PDF

Nature-inspired, robust, durable, liquid-repellent interfaces have attracted considerable interest in the field of wood biomimetic intelligence science and technology application. However, realizing green environmental protection and low maintenance and replacement cost wood surfaces constructed with micro/nanoarchitectures is not an easy task. Aiming at the problem of poor waterproof performance of wood, a silicon dioxide/polydimethylsiloxane (SiO/PDMS) self-cleaning programmable superhydrophobic coating was biomimetically constructed on the wood substrate by surface-embedded dual-dipping design based on the "substrates + nanoparticles" hybrid principle of the lotus leaf effect.

View Article and Find Full Text PDF

Fe-Ni porphyrin/mesoporous titania thin film electrodes: a bioinspired nanoarchitecture for photoelectrocatalysis.

RSC Adv

May 2024

Instituto de Ciencias, Universidad Nacional de General Sarmiento-CONICET Juan María Gutiérrez 1150 (CP1613) Los Polvorines Argentina

Porphyrin and porphyrinoid derivatives have been extensively studied in the assembly of catalysts and sensors, seeking biomimetic and bioinspired activity. In particular, Fe and Ni porphyrins can be used for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) by immobilization of these molecular catalysts on semiconductor materials. In this study, we designed a hybrid material containing a crystalline mesoporous TiO thin film in which the catalytic centres are Ni-porphyrin (NiP), Fe-porphyrin (FeP), and a NiP/FeP bimetallic system to assess whether the coexistence of both metalloporphyrins improves the OER activity.

View Article and Find Full Text PDF

Cancer immunotherapy and vaccine development have significantly improved the fight against cancers. Despite these advancements, challenges remain, particularly in the clinical delivery of immunomodulatory compounds. The tumor microenvironment (TME), comprising macrophages, fibroblasts, and immune cells, plays a crucial role in immune response modulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!