Design and SAR of Withangulatin A Analogues that Act as Covalent TrxR Inhibitors through the Michael Addition Reaction Showing Potential in Cancer Treatment.

J Med Chem

Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.

Published: October 2020

The thioredoxin system plays an important role in cancer cells. Inhibiting thioredoxin reductase (TrxR) has emerged as an effective strategy to selectively target cancer cells. Withangulatin A (), a natural product extracted from the whole herb of L. (Solanaceae), exhibits potent anticancer activity and other diverse pharmacological activities. To improve activity and targeting, we designed and prepared 41 semisynthetic analogues of WA. Biological evaluation indicated that the most promising compound displayed the most significant effect on HT-29 cells (human colon cancer cells) (IC = 0.08 μM). A structure-activity relationship study indicated that α,β-unsaturated ketones and ester are necessary groups, allowing to undergo Michael addition reactions with mercaptan and selenol. Liquid chromatography-mass spectrometry (LC-MS) analysis confirmed that modified selenocysteine 498 (U) residues in the redox centers of TrxR, resulting in enzyme inhibition. Therefore, compound acts as a novel TrxR inhibitor and may be a promising candidate for cancer intervention.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.0c01128DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
michael addition
8
cancer
5
design sar
4
sar withangulatin
4
withangulatin analogues
4
analogues covalent
4
trxr
4
covalent trxr
4
trxr inhibitors
4

Similar Publications

Synergistic Enhancement of Ferroptosis via Mitochondrial Accumulation and Photodynamic-Controlled Release of an Organogold(I) Cluster Prodrug.

J Am Chem Soc

January 2025

Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.

Effective delivery and controlled release of metallo-prodrugs with sustained activation and rapid response feed the needs of precise medicine in metal chemotherapeutics. However, gold-based anticancer drugs often suffer from detoxification binding and extracellular transfer by sulfur-containing peptides. To address this challenge, we integrate a thiol-activated prodrug strategy of newly prepared hypercoordinated carbon-centered gold(I) clusters (HCGCs) with their photosensitization character to augment the mitochondrial release of Au(I) in tumors.

View Article and Find Full Text PDF

Co-blocking TIGIT and PVRIG using a novel bispecific antibody enhances anti-tumor immunity.

Mol Cancer Ther

January 2025

Jiangsu Hengrui Pharmaceutical Co. Ltd, Shanghai, China.

TIGIT and PVRIG are immune checkpoints co-expressed on activated T and NK cells, contributing to tumor immune evasion. Simultaneous blockade of these pathways may enhance therapeutic efficacy, positioning them as promising dual targets for cancer immunotherapy. This study aimed to develop a bispecific antibody (BsAb) to co-target TIGIT and PVRIG.

View Article and Find Full Text PDF

Central nervous system hemangioblastoma (CNS-HB) is the most common manifestation of von Hippel-Lindau disease (VHL). The main axis of the CNS-HB pathway is the VHL-HIF signaling pathway. Recently, we proposed an alternative VHL-JAK-STAT pathway in CNS-HB.

View Article and Find Full Text PDF

Extracellular vesicles-a new player in the development of urinary bladder cancer.

Ther Adv Med Oncol

January 2025

Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.

Bladder cancer was the 10th most commonly diagnosed cancer worldwide in 2020. Extracellular vesicles (EVs) are nano-sized membranous structures secreted by all types of cells into the extracellular space. EVs can transport proteins, lipids, or nucleic acids to specific target cells.

View Article and Find Full Text PDF

Chimeric Antigen Receptor (CAR)-T cell therapy has rapidly emerged as a groundbreaking approach in cancer treatment, particularly for hematologic malignancies. However, the application of CAR-T cell therapy in solid tumors remains challenging. This review summarized the development of CAR-T technologies, emphasized the challenges and solutions in CAR-T cell therapy for solid tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!