A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Highly Conductive Collagen by Low-Temperature Atomic Layer Deposition of Platinum. | LitMetric

In modern biomaterial-based electronics, conductive and flexible biomaterials are gaining increasing attention for their wide range of applications in biomedical and wearable electronics industries. The ecofriendly, biodegradable, and self-resorbable nature of these materials makes them an excellent choice in fabricating green and transient electronics. Surface functionalization of these biomaterials is required to cater to the need of designing electronics based on these substrate materials. In this work, a low-temperature atomic layer deposition (ALD) process of platinum (Pt) is presented to deposit a conductive thin film on collagen biomaterials, for the first time. Surface characterization revealed that a very thin ALD-deposited seed layer of TiO on the collagen surface prior to Pt deposition is an alternative for achieving a better nucleation and 100% surface coverage of ultrathin Pt on collagen surfaces. The presence of a pure metallic Pt thin film was confirmed from surface chemical characterization. Electrical characterization proved the existence of a continuous and conductive Pt thin film (∼27.8 ± 1.4 nm) on collagen with a resistivity of 295 ± 30 μΩ cm, which occurred because of the virtue of TiO. Analysis of its electronic structures showed that the presence of metastable state due to the presence of TiO enables electrons to easily flow from valence into conductive bands. As a result, this turned collagen into a flexible conductive biomaterial.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c13712DOI Listing

Publication Analysis

Top Keywords

thin film
12
low-temperature atomic
8
atomic layer
8
layer deposition
8
conductive thin
8
collagen
6
conductive
5
surface
5
highly conductive
4
conductive collagen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!