Launching Werner Complexes into the Modern Era of Catalytic Enantioselective Organic Synthesis.

Acc Chem Res

Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States.

Published: October 2020

Reactions catalyzed by transition metal complexes almost always entail binding of one or more reactants to the metal center, and nearly every corner of the "chiral pool" has been picked over in efforts to develop enantioselective catalysts. As reported by Alfred Werner in 1911-1912, salts of the formally -symmetric [Co(en)] trication (en = ethylenediamine) were among the first chiral inorganic compounds to be resolved into enantiomers. These air- and water-stable complexes are substitution-inert, so for 100 years they languished without application in organic synthesis. We then showed that when they are rendered soluble in organic media by lipophilic anions such as fluorinated tetraarylborates BAr, they become potent catalysts for a variety of carbon-carbon and carbon-heteroatom bond forming reactions.These involve substrate activation by hydrogen bonding to the coordinated NH units (p ca. 15), a "second coordination sphere" mechanism. Only modest enantioselectivities are obtained with [Co(en)] 3BAr or related chromium, rhodium, iridium, and platinum salts. However, high enantioselectivities are achieved when the three en ligands are replaced by the 1,2-diphenyl analogues (,)- or (,)-HNCHPhCHPhNH. Here only one BAr anion is required to solubilize the trication, so a number of mixed-salt catalysts (2XBAr) have been evaluated. Alternatively, a dimethylamino group can be tethered to the backbone of one en ligand, providing bifunctional catalysts that obviate any need for an external base. Interestingly, the counteranions modulate the enantioselectivities somewhat. However, catalysts with chiral anions do not significantly outperform benchmark catalysts with achiral anions. Cagelike chiral hexaaminecobalt(III) complexes known as sepulchrates and sarcophagines, which feature secondary NH donor atoms, can also serve as catalysts, but the enantioselectivities are very low.In a spinoff application, certain salts are found to be superb "chiral solvating agents", leading to distinct sets of NMR signals for enantiomers of chiral analytes with Lewis basic functional groups. Loadings of 10-25 mol % generally suffice, providing the best way of assaying the enantiomeric purities of a host of compounds. Also, mixtures of several chiral compounds can be simultaneously analyzed. It is not surprising that complexes that perform well in chiral recognition phenomena also excel as enantioselective catalysts.In this Account, the stereochemical properties of the preceding complexes are treated, as well as arcana generally known only to specialists in the field. These include the use of charcoal for equilibrating configurations of the cobalt stereocenter and Sephadex for separating enantiomers and diastereomers. Other types of metal-containing hydrogen-bond-donor catalysts are briefly surveyed (noncoordinating NH units can also be effective), including several developed by other groups. However, the mechanisms of enantioselection in all of these transformations remain obscure. The optimum diastereomer and anion set varies from reaction to reaction, suggesting a "phenotypic plasticity" that allows adaption to a variety of processes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.0c00410DOI Listing

Publication Analysis

Top Keywords

organic synthesis
8
catalysts
8
complexes
6
chiral
6
launching werner
4
werner complexes
4
complexes modern
4
modern era
4
era catalytic
4
catalytic enantioselective
4

Similar Publications

Metal-Modified Zr-MOFs with AIE Ligands for Boosting CO Adsorption and Photoreduction.

Adv Mater

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.

The design and synthesis of metal-organic frameworks (MOFs) with outstanding light-harvesting and photoexcitation for artificial photocatalytic CO reduction is an attractive but challenging task. In this work, a novel aggregation-induced emission (AIE)-active ligand, tetraphenylpyrazine (PTTBPC) is proposed and utilized for the first time to construct a Zr-MOF photocatalyst via coordination with stable Zr-oxo clusters. Zr-MOF is featured by a scu topology with a two-fold interpenetrated framework, wherein the PTTBPC ligands enable strong light-harvesting and photoexcitation, while the Zr-oxo clusters facilitate CO adsorption and activation, as well as offer potential sites for further metal modification.

View Article and Find Full Text PDF

Precisely controlling quantum states is relevant in next-generation quantum computing, encryption, and sensing. Chiral organic chromophores host unique light-matter interactions, which allow them to manipulate the quantized circular polarization of photons. Axially chiral organic scaffolds, such as helicenes or twisted acenes, are powerful motifs in chiral light manipulation.

View Article and Find Full Text PDF

Scalable synthesis of (±)-gregatin A a 1,3-dipolar cycloaddition strategy.

Org Biomol Chem

January 2025

State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.

A 6-step gram-scale synthesis of the fungal polyketide (±)-gregatin A is described. The synthetic route features an intermolecular 1,3-dipolar cycloaddition, a Mo-mediated disconnection of the isoxazole skeleton, and an acid-mediated deprotection/enamine hydrolysis and hemiketalization cascade.

View Article and Find Full Text PDF

Oxygen-Driven Atom Transfer Radical Polymerization.

J Am Chem Soc

January 2025

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.

In traditional atom transfer radical polymerization (ATRP), oxygen must be meticulously eliminated due to its propensity to quench radical species and halt the polymerization process. Additionally, oxygen oxidizes the lower-valent Cu catalyst, compromising its ability to activate alkyl halides and propagate polymerization. In this study, we present an oxygen-driven ATRP utilizing alkylborane compounds, a method that not only circumvents the need for stringent oxygen removal but also exploits oxygen as an essential cofactor to promote polymerization.

View Article and Find Full Text PDF

Introduction: The development of efficient and sustainable catalytic methodolo-gies has garnered considerable attention in contemporary organic synthesis.

Methods: Herein, we present a novel approach employing the Cu@DPP-SPION catalyst for the synthesis of ethyl 4-(aryl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives. This versatile catalytic system incorporates copper nanoparticles supported on 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzoic acid-functionalized superparamagnetic iron oxide nanoparticles (SPIONs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!