A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrospun α-Lactalbumin Nanofibers for Site-Specific and Fast-Onset Delivery of Nicotine in the Oral Cavity: An , , and Tissue Spatial Distribution Study. | LitMetric

Nicotine replacement therapy (NRT) formulations for oromucosal administration induce a delayed rise in nicotine blood levels as opposed to the immediate nicotine increase obtained from cigarette smoking, this being a shortcoming of the therapy. Here, we demonstrate that α-lactalbumin/polyethylene oxide (ALA/PEO) electrospun nanofibers constitute an efficient oromucosal delivery system for fast-onset nicotine delivery of high relevance for acute dosing NRT applications. , nicotine-loaded nanofibers showed fast disintegration in water, with a weight loss up to 40% within minutes, and a faster nicotine release (26.1 ± 4.6% after 1 min of incubation) of the loaded nicotine compared to two relevant marketed NRT formulations with a comparable nicotine dose (, 7.9 ± 5.1 and 2.2 ± 0.3% nicotine was released from a lozenge and a sublingual tablet, respectively). Model-fitting of the release data indicated that the release mechanism of nicotine from the hydrophilic nanofibers was possibly governed by more than one type of release phenomena. Remarkably, studies using porcine buccal mucosa demonstrated a more efficient permeation of the nicotine released from the nanofibers [flux of 1.06 ± 0.22 nmol/(cm·min)] compared to when dosing even a ten-fold concentrated nicotine solution [flux of 0.17 ± 0.14 nmol/(cm·min)]. Moreover, matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MS) imaging of porcine buccal mucosa exposed to nicotine-loaded nanofibers clearly revealed higher amounts of nicotine throughout the epithelium, as well as in the lamina propria and submucosa of the tissue. Our findings suggest that nicotine-loaded ALA/PEO nanofibers have potential as a mucosal, fast-releasing, and biocompatible delivery system for nicotine, which can overcome the limitations of the currently marketed NRTs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.0c00642DOI Listing

Publication Analysis

Top Keywords

nicotine
14
nrt formulations
8
delivery system
8
nicotine-loaded nanofibers
8
nicotine released
8
porcine buccal
8
buccal mucosa
8
nanofibers
7
electrospun α-lactalbumin
4
α-lactalbumin nanofibers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!