Difunctionalization reactions of C-C σ-bonds have the potential to streamline access to molecules that would otherwise be difficult to prepare. However, the development of such reactions is challenging because C-C σ-bonds are typically unreactive. Exploiting the high ring-strain energy of polycyclic carbocycles is a common strategy to weaken and facilitate the reaction of C-C σ-bonds, but there are limited examples of highly strained C-C σ-bonds being used in difunctionalization reactions. We demonstrate that highly strained bicyclo[1.1.0]butyl boronate complexes (strain energy ca. 65 kcal/mol), which were prepared by reacting boronic esters with bicyclo[1.1.0]butyl lithium, react with electrophiles to achieve the diastereoselective difunctionalization of the strained central C-C σ-bond of the bicyclo[1.1.0]butyl unit. The reaction shows broad substrate scope, with a range of different electrophiles and boronic esters being successfully employed to form a diverse set of 1,1,3-trisubstituted cyclobutanes (>50 examples) with high diastereoselectivity. The high diastereoselectivity observed has been rationalized based on a combination of experimental data and DFT calculations, which suggests that separate concerted and stepwise reaction mechanisms are operating, depending upon the migrating substituent and electrophile used.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.0c07357 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!