Inhibition of focal adhesion kinase increases myofibril viscosity in cardiac myocytes.

Cytoskeleton (Hoboken)

Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA.

Published: September 2020

The coordinated generation of mechanical forces by cardiac myocytes is required for proper heart function. Myofibrils are the functional contractile units of force production within individual cardiac myocytes. At the molecular level, myosin motors form cross-bridges with actin filaments and use ATP to convert chemical energy into mechanical forces. The energetic efficiency of the cross-bridge cycle is influenced by the viscous damping of myofibril contraction. The viscoelastic response of myofibrils is an emergent property of their individual mechanical components. Previous studies have implicated titin-actin interactions, cell-ECM adhesion, and microtubules as regulators of the viscoelastic response of myofibrils. Here we probed the viscoelastic response of myofibrils using laser-assisted dissection. As a proof-of-concept, we found actomyosin contractility was required to endow myofibrils with their viscoelastic response, with blebbistatin treatment resulting in decreased myofibril tension and viscous damping. Focal adhesion kinase (FAK) is a key regulator of cell-ECM adhesion, microtubule stability, and myofibril assembly. We found inhibition of FAK signaling altered the viscoelastic properties of myofibrils. Specifically, inhibition of FAK resulted in increased viscous damping of myofibril retraction following laser ablation. This damping was not associated with acute changes in the electrophysiological properties of cardiac myocytes. These results implicate FAK as a regulator of mechanical properties of myofibrils.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8207544PMC
http://dx.doi.org/10.1002/cm.21632DOI Listing

Publication Analysis

Top Keywords

cardiac myocytes
16
viscoelastic response
16
viscous damping
12
response myofibrils
12
focal adhesion
8
adhesion kinase
8
mechanical forces
8
damping myofibril
8
cell-ecm adhesion
8
inhibition fak
8

Similar Publications

Cannabidiol Ameliorates Doxorubicin-Induced Myocardial Injury via Activating Hippo Pathway.

Drug Des Devel Ther

January 2025

School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, 154000, People's Republic of China.

Background: Doxorubicin (DOX) is a chemotherapeutic agent widely used for cancer treatment and has non-negligible cardiotoxicity. Some previous studies have reported that cannabidiol (CBD) has cardioprotective effects. In this study, we evaluated the protective effects of CBD against DOX-induced cardiomyocyte injury, and explored the downstream molecular mechanism.

View Article and Find Full Text PDF

Leptin drives glucose metabolism to promote cardiac protection via OPA1-mediated HDAC5 translocation and Glut4 transcription.

Funct Integr Genomics

January 2025

Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China.

Metabolic reprogramming, the shifting from fatty acid oxidation to glucose utilization, improves cardiac function as heart failure (HF) progresses. Leptin plays an essential role in regulating glucose metabolism. However, the crosstalk between leptin and metabolic reprogramming is poorly understood.

View Article and Find Full Text PDF

Aims: Decrease in repolarizing K+ currents, particularly the fast component of transient outward K+ current (Ito,f), prolongs action potential duration (APD) and predisposes the heart to ventricular arrhythmia during cardiac hypertrophy. Histone deacetylases (HDACs) have been suggested to participate in the development of cardiac hypertrophy, and class I HDAC inhibition has been found to attenuate pathological remodeling. This study investigated the potential therapeutic effects of HDAC2 on ventricular arrhythmia in pressure overload-induced cardiac hypertrophy.

View Article and Find Full Text PDF

The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.

View Article and Find Full Text PDF

Objective: Myocardial ischemia-reperfusion injury (MIRI) is a highly complex disease with high morbidity and mortality. Studying the molecular mechanism of MIRI and discovering new targets are crucial for the future treatment of MIRI.

Methods: We constructed the MIRI rat model and hypoxia/reoxygenation (H/R) injury cardiomyocytes model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!