Solar photocatalysis as strategy for on-site reclamation of agro-wastewater polluted with pesticide residues on farms using a modular facility.

Environ Sci Pollut Res Int

Department of Agricultural Chemistry, Geology and Pedology, Faculty of Chemistry, University of Murcia, Campus Universitario de Espinardo, 30100, Murcia, Spain.

Published: May 2021

AI Article Synopsis

  • The study highlights the environmental concern of agro-wastewater containing pesticide residues generated from phytosanitary treatments on crops.
  • A pilot facility was set up at two farms to assess the degradation of five different pesticides using advanced oxidation treatments powered by natural sunlight.
  • Results indicated varying effectiveness in degrading these pesticides, with remaining percentages showing a correlation to initial concentrations, suggesting that this method could effectively reduce pesticide residues in agro-wastewater.

Article Abstract

One of the consequences of phytosanitary treatments applied to crops is the generation of a great volume of agro-wastewater having pesticide residues. These pollutants can be considered a serious threat to the environment and human health due to their capacity to affect distant areas remaining for a long time after their application. We have assessed the degradation of five pesticides in agro-waste water produced in two farms by the cleaning pesticide containers and phytosanitary treatment equipment used in the farms. For this purpose, a pilot facility was installed in both farms and advanced oxidation treatments were conducted using natural sunlight by means of NaSO and heterogeneous photocatalysis (TiO/NaSO). The remaining percentages obtained at the end of the experiments ranged from 5 to 90.1% for chlorantraniliprole, 5 to 82.3% for difenoconazole, 0.02 to 19.1% for metalaxyl, 1.4 to 74.4% for myclobutanil, and 0.3 to 61% for triadimenol. We observed a correlation between the higher remaining percentages and the total initial concentration of pollutant because of other commercial formulations applied in the farms. The results showed that this equipment could be used to eliminate or reduce the presence of pesticide residues in agro-waste water using an innovative facility installed in the farms and a renewable and economical source of energy (sunlight).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-10631-4DOI Listing

Publication Analysis

Top Keywords

pesticide residues
12
agro-waste water
8
facility installed
8
installed farms
8
remaining percentages
8
farms
6
solar photocatalysis
4
photocatalysis strategy
4
strategy on-site
4
on-site reclamation
4

Similar Publications

Detection of glyphosate, glufosinate, and their metabolites in multi-floral honey for food safety.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess

January 2025

Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy.

Beehives can accumulate environmental contaminants as bees gather pollen, propolis, and water from their surroundings, contaminating hive products like honey. Moreover, in multifloral environments, bees can interact with plants treated with different pesticides, often causing higher pesticides concentrations in multi-floral honey than in mono-floral varieties. Glyphosate and glufosinate are both widely used herbicides.

View Article and Find Full Text PDF

Intramolecular distance-regulated G4 DNA enzymatic activity-based chromophotometric system for visual monitoring of diquat.

Anal Chim Acta

January 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China. Electronic address:

Background: As global food production continues to surge, the widespread use of herbicides has also increased concurrently, posing challenges like health risks and environmental pollution. Traditional detection methods for pesticide residues, such as diquat (DQ), were hampered by limitations like high expenses, lengthy detection times and complex operations, restricting their practical application in rapid clinical diagnosis.

Results: In light of the pressing necessity for the identification of minute pesticide residues and the intrinsic constraints of small molecule analysis, a novel chromophotometric biosensor targeting small molecules was developed based on bi-epitopes on single antibody to immobilize two DQ-PAL, inhibiting the hybridization of DQ-PAL.

View Article and Find Full Text PDF

Selective colorimetric detection of carbosulfan based on its hydrolysis behavior and TiC/AuPt nanozyme.

Anal Chim Acta

January 2025

School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China. Electronic address:

Background: Carbosulfan (CBS) is a widely used carbamate pesticide in agricultural production, its easy decomposition into hypertoxic carbofuran poses serious threats to human health and food safety. Therefore, sensitive and accurate detection of CBS is of significant importance. Conventional chromatography-based techniques require expensive instruments and complicated sample pretreatment, limiting their application for fast detection.

View Article and Find Full Text PDF

Development of a portable SERS tool to evaluate the effectiveness of washing methods to remove pesticide residue from fruit surface.

Anal Chim Acta

January 2025

Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA; Materials Engineering and Science Program, State University of New York at Binghamton, Binghamton, NY, 13902, USA. Electronic address:

Background: Pesticides are widely used in agriculture to control pests and enhance crop yields. However, post-harvest, there are growing concerns about the potential health risks posed by pesticide residues on produce surfaces. Analyzing these residues is challenging due to their typically low concentrations and the potential interference from the complex matrix of the produce's surface.

View Article and Find Full Text PDF

Lateral flow immunoassay (LFIA) has the advantages of simplicity and rapidness, and is widely used for the rapid detection of pesticides and other analytes. However, small molecule compounds such as pesticides are often analyzed using competitive LFIA (CLFIA), whose sensitivity often does not meet the actual needs. In this study, a noncompetitive LFIA (NLFIA) for deltamethrin (DM) with high sensitivity was developed by using anti-immunocomplex peptides (AIcPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!