Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The dispersal routes of taxa with transoceanic disjunctions remain poorly understood, with the potential roles of Antarctica not yet demonstrated. Mosses are suitable organisms to test direct intra-Antarctic dispersal, as major component of the extant Antarctic flora, with the cosmopolitan moss as ideal target species. We analyzed the genetic structure of to provide an evolutionary time frame for its radiation and shed light into its historical biogeography in the Antarctic region. We tested two alternative scenarios: (a) intra-Antarctic panmixia and (b) intra-Antarctic genetic differentiation. Furthermore, we tested for evidence of the existence of specific intra-Antarctic dispersal routes. Sixty-seven new samples (40 collected in Antarctica) were sequenced for ITS nrDNA and rps4 cpDNA regions, and phylogenetic trees of were constructed, with a focus on its Southern Hemisphere. Combining our new nrDNA dataset with previously published datasets, we estimated time-calibrated phylogenies based on two different substitution rates (derived from angiosperms and bryophytes) along with ancestral area estimations. Minimum spanning network and pairwise genetic distances were also calculated. was potentially distributed across Africa and Antarctica soon after its origin. Its earliest intra-Antarctic dispersal and diversification occurred during a warming period in the Pliocene. On the same timescale, a radiation took place involving a dispersal event from Antarctica to the sub-Antarctic islands. A more recent event of dispersal and diversification within Antarctica occurred during a warm period in the Pleistocene, creating favorable conditions also for its colonization outside the Antarctic continent worldwide. We provide evidence supporting the hypothesis that contemporary populations of in Antarctica integrate a history of both multiple long-range dispersal events and local persistence combined with in situ diversification. Our data support the hypothesis that has been characterized by strong connectivity within Antarctica, suggesting the existence of intra-Antarctic dispersal routes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7452785 | PMC |
http://dx.doi.org/10.1002/ece3.6601 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!