Introduction: Cerebellar dysplasia with cysts (CDC) is an imaging finding which is typically seen with in individuals with dystroglycanopathy. One of the diseases causing this condition is "Poretti-Boltshauser Syndrome; PTBHS" (OMIM #615960). Homozygous or compound heterozygous mutations in the gene cause this disease.

Case Presentation: 7 years old twin siblings consulted to the medical genetics department because of walking problems and cerebellar examination findings.

Management And Outcome: Clinical and radiological findings of the patient suggested a syndrome with recessive inheritance. Whole exome sequencing (WES) test was performed for definitive diagnosis. As a result of the patient's WES analysis, a homozygous mutation was detected in the gene.

Discussion: When determining the inheritance pattern of genetic diseases, if parents have consanquinity, this situation leads us to recessive inheritance diseases. Even if we are not consanquinity, but they say the same village, it is necessary to pay attention to the diseases of the recessive group. Whole exome sequencing analysis results in large amount of data generation. A good clinical evaluation is required to detect the mutation as a result of large data. To understand what we have found, we need to know what we are looking for.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7440728PMC
http://dx.doi.org/10.1177/1179547620948666DOI Listing

Publication Analysis

Top Keywords

recessive inheritance
8
exome sequencing
8
understanding family
4
family mutation
4
mutation gene
4
gene literature
4
literature review
4
review introduction
4
introduction cerebellar
4
cerebellar dysplasia
4

Similar Publications

Bovine spastic syndrome (SS) is a progressive, adult-onset neuromuscular disorder (NMD). SS is inherited but the mode of inheritance is unclear. The aim of this study was to characterize the phenotype and to identify a possible genetic cause of SS by whole-genome sequencing (WGS) and focusing on protein-changing variants.

View Article and Find Full Text PDF

Purpose: Heterozygous pathogenic variants in SPAST are known to cause Hereditary Spastic Paraplegia 4 (SPG4), the most common form of HSP, characterized by progressive bilateral lower limbs spasticity with frequent sphincter disorders. However, there are very few descriptions in the literature of patients carrying biallelic variants in SPAST.

Methods: Targeted Sanger sequencing, panel sequencing and exome sequencing were used to identify the genetic causes in 9 patients from 6 unrelated families with symptoms of HSP or infantile neurodegenerative disorder.

View Article and Find Full Text PDF

Leber congenital amaurosis: A clinical and genetic study from a tertiary eye care center.

Indian J Ophthalmol

December 2024

Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Anant Bajaj Retina Institute, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, Telangana, India.

Purpose: To assess the clinical phenotypes and genetic mutations in patients with Leber congenital amaurosis (LCA) from a tertiary eye care center in India.

Design: Retrospective observational study.

Methods: The study includes patients with a clinical diagnosis of LCA who underwent genetic testing from January 2016 to December 2021.

View Article and Find Full Text PDF

Hereditary spastic paraplegias (HSP) are a diverse group of neurodegenerative diseases characterized by lower limb spasticity and weakness. To date, over 80 genes have been associated with HSP, but many families remain without a molecular diagnosis. In this study, linkage analysis and whole-exome sequencing (WES) were performed to identify the causal gene in a HSP family with autosomal recessive inheritance.

View Article and Find Full Text PDF

Biallelic loss of function variant in SEC31A is associated with lethal neurodevelopmental disorder, dysmorphic features, and skeletal defects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!