NEAT1 Knockdown Suppresses the Cisplatin Resistance in Ovarian Cancer by Regulating miR-770-5p/PARP1 Axis.

Cancer Manag Res

Department of Obstetrics, Qianjiang Central Hospital of Chongqing, Chongqing 409000, People's Republic of China.

Published: August 2020

Background: Long noncoding RNAs play essential roles in regulating drug resistance in cancers. However, how and whether lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) could mediate cisplatin resistance in ovarian cancer remain poorly understood.

Patients And Methods: Eighteen cisplatin-sensitive and 19 cisplatin-resistant patients with ovarian cancer were recruited. Cisplatin-resistant ovarian cancer cells were used for this study. The expression levels of NEAT1, microRNA (miR)-770-5p and poly adenosine diphosphate-ribose polymerase 1 (PARP1) were detected by quantitative real-time polymerase chain reaction or Western blot. Cisplatin resistance was assessed by the half-maximal inhibitory concentration (IC50) of cisplatin, cell viability and apoptosis using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide, flow cytometry and Western blot, respectively. The target association between miR-770-5p and NEAT1 or PARP1 was investigated by dual-luciferase reporter assay. The xenograft model was used to investigate cisplatin resistance in vivo.

Results: NEAT1 expression is elevated in cisplatin-resistant ovarian cancer tissues and cells. Knockdown of NEAT1 repressed cisplatin resistance by decreasing the IC50 of cisplatin, cell viability and increasing apoptosis. MiR-770-5p was bound to NEAT1 and PARP1 was confirmed as a target of miR-770-5p. MiR-770-5p inhibition or PARP1 restoration could abate the effect of NEAT1 silencing on cisplatin resistance in cisplatin-resistant ovarian cancer cells. Moreover, NEAT1 knockdown reduced PARP1 expression by increasing miR-770-5p. Interference of NEAT1 decreased xenograft tumor growth by regulating miR-770-5p and PARP1.

Conclusion: Knockdown of NEAT1 inhibited cisplatin resistance in ovarian cancer cells by up-regulating miR-770-5p and down-regulating PARP1, providing a new target for improving the efficacy of cisplatin-based therapy in ovarian cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7434570PMC
http://dx.doi.org/10.2147/CMAR.S257311DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
32
cisplatin resistance
28
resistance ovarian
12
cisplatin-resistant ovarian
12
cancer cells
12
neat1
11
cisplatin
9
neat1 knockdown
8
resistance
8
ovarian
8

Similar Publications

Aim: o point out how novel analysis tools of AI can make sense of the data acquired during OL and OC diagnosis and treatment in an effort to help improve and standardize the patient pathway for these disease.

Material And Methods: ultilizing programmed detection of heterogeneus OL and OC habitats through radiomics and correlate to imaging based tumor grading plus a literature review.

Results: new analysis pipelines have been generated for integrating imaging and patient demographic data and identify new multi-omic biomarkers of response prediction and tumour grading using cutting-edge artificial intelligence (AI) in OL and OC.

View Article and Find Full Text PDF

Background: Hematologic changes after splenectomy and hyperthermic intraperitoneal chemotherapy (HIPEC) can complicate postoperative assessment of infection. This study aimed to develop a machine-learning model to predict postoperative infection after cytoreductive surgery (CRS) and HIPEC with splenectomy.

Methods: The study enrolled patients in the national TriNetX database and at the Johns Hopkins Hospital (JHH) who underwent splenectomy during CRS/HIPEC from 2010 to 2024.

View Article and Find Full Text PDF

Purpose: Ovarian-Adnexal Reporting and Data System (O-RADS) US provides a standardized lexicon for ovarian and adnexal lesions, facilitating risk stratification based on morphological features for malignancy assessment, which is essential for proper management. However, systematic determination of inter-reader reliability in O-RADS US categorization remains unexplored. This study aimed to systematically determine the inter-reader reliability of O-RADS US categorization and identify the factors that affect it.

View Article and Find Full Text PDF

Background: Borderline ovarian tumors (BOTs) differ from ovarian carcinomas in their clinical presentation and behavior, yet their molecular characteristics remain poorly understood. This study aims to address this gap by integrating whole-exome sequencing (WES) and RNA sequencing (RNA-seq) to compare BOTs with high-grade serous carcinoma (HGSC), endometrioid carcinoma (EC), and clear-cell carcinoma (CCC).

Objective: To elucidate the molecular features of BOTs and evaluate their similarities and differences in comparison to HGSC, EC, and CCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!