The spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus has been unprecedentedly fast, spreading to more than 180 countries within 3 months with variable severity. One of the major reasons attributed to this variation is genetic mutation. Therefore, we aimed to predict the mutations in the spike protein (S) of the SARS-CoV-2 genomes available worldwide and analyze its impact on the antigenicity.  Several research groups have generated whole genome sequencing data which are available in the public repositories. A total of 1,604 spike proteins were extracted from 1,325 complete genome and 279 partial spike coding sequences of SARS-CoV-2 available in NCBI till May 1, 2020 and subjected to multiple sequence alignment to find the mutations corresponding to the reported single nucleotide polymorphisms (SNPs) in the genomic study. Further, the antigenicity of the predicted mutations inferred, and the epitopes were superimposed on the structure of the spike protein.  The sequence analysis resulted in high SNPs frequency. The significant variations in the predicted epitopes showing high antigenicity were A348V, V367F and A419S in receptor binding domain (RBD). Other mutations observed within RBD exhibiting low antigenicity were T323I, A344S, R408I, G476S, V483A, H519Q, A520S, A522S and K529E. The RBD T323I, A344S, V367F, A419S, A522S and K529E are novel mutations reported first time in this study. Moreover, A930V and D936Y mutations were observed in the heptad repeat domain and one mutation D1168H was noted in heptad repeat domain 2.  S protein is the major target for vaccine development, but several mutations were predicted in the antigenic epitopes of S protein across all genomes available globally. The emergence of various mutations within a short period might result in the conformational changes of the protein structure, which suggests that developing a universal vaccine may be a challenging task.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7462717PMC
http://dx.doi.org/10.1055/s-0040-1715790DOI Listing

Publication Analysis

Top Keywords

spike protein
12
mutations
9
vaccine development
8
v367f a419s
8
mutations observed
8
t323i a344s
8
a522s k529e
8
heptad repeat
8
repeat domain
8
protein
6

Similar Publications

Lipid-encapsulated gold nanoparticles: an advanced strategy for attenuating the inflammatory response in SARS-CoV-2 infection.

J Nanobiotechnology

January 2025

Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Republic of Korea.

Background: Nanodrugs play a crucial role in biomedical applications by enhancing drug delivery. To address safety and toxicity concerns associated with nanoparticles, lipid-nanocarrier-based drug delivery systems have emerged as a promising approach for developing next-generation smart nanomedicines. Ginseng has traditionally been used for various therapeutic purposes, including antiviral activity.

View Article and Find Full Text PDF

We investigated whether antibody concentrations measured in plasma using the Roche Elecsys® Anti-SARS-CoV-2 S assay (targeting the receptor binding domain, RBD) could estimate levels of Wuhan-Hu-1 and Omicron XBB.1.5 spike-directed antibodies with neutralizing ability (NtAb) or those mediating NK-cell activity.

View Article and Find Full Text PDF

Objectives: We assessed the transmission of SARS-CoV-2 and vaccine receipt in a representative sample of wet market workers in a highly dense, low-income setting. Wet markets are key in many Asian settings, including Dhaka, Bangladesh, for fresh food, including animal protein.

Methods: During early 2022, we assessed the prevalence of anti-SARS-CoV-2 antibodies in a random sample of poultry and vegetable workers in 15 wet markets, and investigated associations with socio-demographic characteristics and COVID-19 vaccination.

View Article and Find Full Text PDF

The COVID-19 pandemic has underscored the urgent need for antiviral agents capable of targeting a broad range of coronaviruses, including emerging variants of SARS-CoV-2. While vaccines have been pivotal, the search for drugs that can prevent viral entry into host cells remains crucial, especially against evolving viral forms and other coronaviruses. In this study, we investigated natural products as a source of antiviral agents, focusing on their potential to block the spike protein's receptor-binding domain (RBD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!