The mycophenolic acid producing ascomycete Penicillium brevicompactum is considered to be an anamorphic (asexual) species, for which a sexual cycle was never observed. However, since recent reports of otherwise asexually propagating filamentous fungi have demonstrated a sexual cycle controlled by mating type loci, we carried out a molecular analysis of mating type loci from P. brevicompactum. Using data from extensive DNA sequencing analysis, we determined the mating type loci from 22 strains derived from various type culture collections. We found 8 strains carrying a MAT1-1 locus encoding a 362 amino acid alpha domain transcription factor. The other 14 possessed a MAT1-2 locus encoding a 298 amino acid HMG domain transcription factor. cDNA analysis confirmed that both mating type loci are transcriptionally expressed. The karyotype of six selected strains, determined using contour-clamped homogeneous electric field (CHEF) electrophoresis, demonstrated distinct differences in size and numbers of chromosomes between the strains investigated. Interestingly, our phylogenetic survey of 72 strains from 11 different Penicillium species revealed that MAT genes serve as excellent molecular markers to determine phylogenetic relationships among species closely related to P. brevicompactum. Based on our sequencing results, we constructed transformation vectors for site-specific deletion of mating type loci from two selected strains of opposite mating type. Complementation strains were constructed containing both the mating type locus deletion cassette and a MAT-egfp fusion gene. These strains were used for comparative phenotypic analyses between strains containing or lacking the mating type gene. Whereas all MAT1-2 strains were indistinguishable, the MAT1-1 and MAT1-1-1 deletion strains differed distinctly. The MAT1-1-1 deletion strain produced more conidiospores on solid media, but smaller pellets in liquid media. This is probably the consequence of fewer conidial germ tubes than with the wild type mating type strain. Finally, we showed that the MAT-EGPF fusion protein is localized to the nuclei and detectable in protein samples by Western analysis. Together, our results suggest that the asexually propagating fungus P. brevicompactum might be a heterothallic species with a cryptic sexual life cycle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.funbio.2020.07.006 | DOI Listing |
Biochim Biophys Acta Mol Basis Dis
January 2025
Alzheimer's Disease Genetics Laboratory, School of Molecular and Biomedical Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia.
Sanfilippo syndrome (mucopolysaccharidosis type III, MPSIII) causes childhood dementia, while Alzheimer's disease is the most common type of adult-onset dementia. There is no cure for either of these diseases, and therapeutic options are extremely limited. Increasing evidence suggests commonalities in the pathogenesis of these diseases.
View Article and Find Full Text PDFMol Phylogenet Evol
January 2025
Department of Ecology and Evolutionary Biology and University of Michigan Herbarium, University of Michigan, Ann Arbor, MI 48109, USA.
Lorchels, also known as false morels (Gyromitra sensu lato), are iconic due to their brain-shaped mushrooms and production of gyromitrin, a deadly mycotoxin. Molecular phylogenetic studies have hitherto failed to resolve deep-branching relationships in the lorchel family, Discinaceae, hampering our ability to settle longstanding taxonomic debates and to reconstruct the evolution of toxin production. We generated 75 draft genomes from cultures and ascomata (some collected as early as 1960), conducted phylogenomic analyses using 1542 single-copy orthologs to infer the early evolutionary history of lorchels, and identified genomic signatures of trophic mode and mating-type loci to better understand lorchel ecology and reproductive biology.
View Article and Find Full Text PDFBiol Open
December 2024
Institut Curie, Université PSL, CNRS UMR3348, 91400 Orsay, France.
The SUMO-targeted ubiquitin ligase (STUbL) family is involved in multiple cellular processes via a wide range of mechanisms to maintain genome stability. One of the evolutionarily conserved functions of STUbL is to promote changes in the nuclear positioning of DNA lesions, targeting them to the nuclear periphery. In Schizossacharomyces pombe, the STUbL Slx8 is a regulator of SUMOylated proteins and promotes replication stress tolerance by counteracting the toxicity of SUMO conjugates.
View Article and Find Full Text PDFAnim Genet
February 2025
Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany.
In this study, I report an unexpected case of a Holstein calf that developed horns even though the sire was homozygous and the dam was heterozygous for polledness. After verifying and confirming the correct parentage, the parents and offspring were genotyped with the Illumina EuroG_MD BeadChip and the SNPs in the polled region on chromosome 1 were evaluated. In addition, the father was sequenced with next generation sequencing to identify possible, previously unknown variants.
View Article and Find Full Text PDFNat Commun
January 2025
Applied BioSciences, Macquarie University, Sydney, NSW 2109, Australia.
The emergence of insecticide resistance has increased the need for alternative pest management tools. Numerous genetic biocontrol approaches, which involve the release of genetically modified organisms to control pest populations, are in various stages of development to provide highly targeted pest control. However, all current mating-based genetic biocontrol technologies function by releasing engineered males which skew sex-ratios or reduce offspring viability in subsequent generations which leaves mated females to continue to cause harm (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!