Despite multiple taxonomic revisions, several uncertainties at the genus and species level remain to be resolved within the Serendipitaceae family (Sebacinales). This volatile classification is attributed to the limited number of available axenic cultures and the scarcity of useful morphological traits. In the current study, we attempted to discover alternative taxonomic markers not relying on DNA sequences to differentiate among the closely related members of our Congolese Serendipita isolate collection and the reference strains S. indica (syn. Piriformospora indica) and S. williamsii (syn. P. williamsii). We demonstrated that nuclear distribution across hyphal cells and genome size (determined by flow cytometry) did not have enough resolving power, but quantitative and qualitative variations in the ultrastructure of the dolipore septa investigated by transmission electron microscopy did provide useful markers. Multivariate analysis revealed that subtle differences in ultrastructural characteristics of the parenthesome and the attached endoplasmic reticulum are most relevant when studying this fungal group. Moreover, the observed clustering pattern showed that there might be more diversity amongst the Congolese isolates within the S. 'williamsii' species complex than previously anticipated based on molecular data. Altogether, our results provide novel perspectives on the use of integrative approaches to support sebacinoid and Serendipitaceae taxonomy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.funbio.2020.06.001 | DOI Listing |
Discov Oncol
January 2025
Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China.
Aim: To construct a predictive model based on the LODDS stage established for patients with late-onset colon adenocarcinoma to enhance survival stratification.
Methods: Late-onset colon adenocarcinoma data were obtained from the public database. After determining the optimal LODDS truncation value for the training set via X-tile software, we created a new staging system by integrating the T stage and M stage.
Mar Biotechnol (NY)
January 2025
Marine Ecology Research Center, Ministry of Natural Resources, First Institute of Oceanography, Qingdao, 266061, China.
Planiliza haematocheilus, a teleostan species noted for its ecological adaptability and economic significance, thrives in both freshwater and marine environments. This study presents a novel chromosome-level genome assembly through Hi-C, PacBio CCS, and Illumina sequencing methods. The assembled genome has a final size of 651.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
Strain NoAH (=KACC 23135=JCM 35999), a novel Gram-negative, motile bacterium with a rod-shaped morphology, was isolated from the zoo animal faecal samples, specifically the long-tailed goral species . The novel bacterial strain grew optimally in a nutrient broth medium under the following conditions: 1-2% (w/v) NaCl, pH 7-8 and 30 °C. The strain NoAH exhibited high tolerance to NaCl, with the ability to tolerate up to 7% (w/v) NaCl.
View Article and Find Full Text PDFGigascience
January 2025
Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, 53113 Bonn, Germany.
Background: In this study, we present an in-depth analysis of the Eurasian minnow (Phoxinus phoxinus) genome, highlighting its genetic diversity, structural variations, and evolutionary adaptations. We generated an annotated haplotype-phased, chromosome-level genome assembly (2n = 50) by integrating high-fidelity (HiFi) long reads and chromosome conformation capture data (Hi-C).
Results: We achieved a haploid size of 940 megabase pairs (Mbp) for haplome 1 and 929 Mbp for haplome 2 with high scaffold N50 values of 36.
Sci Data
January 2025
Hubei Hongshan Laboratory, Wuhan, 430070, China.
The cabbage aphid, Brevicoryne brassicae, is a major pest on Brassicaceae plants, causing significant yield losses annually. However, the lack of genomic resources has hindered progress in understanding this pest at the molecular level. Here, we present a high-quality, chromosomal-level genome assembly for B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!