Modern Techniques in Colorado Potato Beetle ( Say) Control and Resistance Management: History Review and Future Perspectives.

Insects

Department of Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia.

Published: September 2020

Colorado potato beetle, CPB ( Say), is one of the most important pests of the potato globally. Larvae and adults can cause complete defoliation of potato plant leaves and can lead to a large yield loss. The insect has been successfully suppressed by insecticides; however, over time, has developed resistance to insecticides from various chemical groups, and its once successful control has diminished. The number of available active chemical control substances is decreasing with the process of testing, and registering new products on the market are time-consuming and expensive, with the possibility of resistance ever present. All of these concerns have led to the search for new methods to control CPB and efficient tools to assist with the detection of resistant variants and monitoring of resistant populations. Current strategies that may aid in slowing resistance include gene silencing by RNA interference (RNAi). RNAi, besides providing an efficient tool for gene functional studies, represents a safe, efficient, and eco-friendly strategy for CPB control. Genetically modified (GM) crops that produce the toxins of () have many advantages over agro-technical, mechanical, biological, and chemical measures. However, pest resistance that may occur and public acceptance of GM modified food crops are the main problems associated with crops. Recent developments in the speed, cost, and accuracy of next generation sequencing are revolutionizing the discovery of single nucleotide polymorphisms (SNPs) and field of population genomics. There is a need for effective resistance monitoring programs that are capable of the early detection of resistance and successful implementation of integrated resistance management (IRM). The main focus of this review is on new technologies for CPB control (RNAi) and tools (SNPs) for detection of resistant CPB populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7563253PMC
http://dx.doi.org/10.3390/insects11090581DOI Listing

Publication Analysis

Top Keywords

colorado potato
8
potato beetle
8
resistance
8
resistance management
8
detection resistant
8
cpb control
8
control
6
cpb
5
modern techniques
4
techniques colorado
4

Similar Publications

Age-Stage, Two-Sex Life Table of (Coleoptera: Chrysomelidae) Experiencing Cadmium Stress.

Insects

January 2025

Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.

Cadmium in agricultural soils has emerged as a substantial threat to crop health and yields through its bioaccumulation along the food chain, with further repercussions for the growth, development, and population dynamics of herbivorous insects. In this study, potted potato plants were treated with Cd solutions at concentrations of 0 mg/kg, 30 mg/kg, 60 mg/kg, 90 mg/kg, and 120 mg/kg. Colorado potato beetles () were fed on potato leaves exposed to these varying concentrations of cadmium, and the effects on their growth and development were assessed.

View Article and Find Full Text PDF

In the search for effective strategies to control the Colorado Potato Beetle, RNA interference technology has emerged as a promising method due to its capacity to suppress genes selectively. Factors such as the target gene and double-stranded RNA (dsRNA) length are critical for optimizing gene silencing efficiency. In this study, we designed and synthesized in vitro dsRNAs of varying lengths targeting the gene, which encodes the AChE1 isoform of acetylcholinesterase in the beetle.

View Article and Find Full Text PDF

Potato is an important sector to the U.S. economy, and it created over $100 billion in economic activity in 2021.

View Article and Find Full Text PDF

Molecular target for sprayable double-stranded RNA-based biopesticide against Amphitetranychus viennensis (Acari, Tetranychidae).

Int J Biol Macromol

December 2024

College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China. Electronic address:

Amphitetranychus viennensis, a destructive pest mite of fruit plants in Europe and Asia, poses a serious challenge due to its adaptability and resistance to multiple acaricides. RNA interference (RNAi)-based technologies offer a promising alternative to address this emerging issue. In this study, we screened for candidate genes that can be targeted for spray-induced gene silencing (SIGS).

View Article and Find Full Text PDF

The Colorado Potato Beetle, Leptinotarsa decemlineata Say, is the principal defoliator of potato crops globally. It is well known for its propensity to rapidly develop resistance. Thus, new control options which are resilient to the pest's resistance capabilities are a critical need.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!