A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Signs of a phyllospheric lifestyle in the genome of the stress-tolerant strain Azospirillum brasilense Az19. | LitMetric

Signs of a phyllospheric lifestyle in the genome of the stress-tolerant strain Azospirillum brasilense Az19.

Syst Appl Microbiol

Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, km 73.5 226 route, Balcarce B7620, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, 2290 Godoy Cruz str., CABA C1425FQB, Argentina. Electronic address:

Published: November 2020

AI Article Synopsis

  • Azospirillum brasilense Az19 is a beneficial bacterium that helps protect plants from drought stress by utilizing various genomic mechanisms.
  • The genome of strain Az19 was sequenced, revealing 6710 genes and confirming its close relationship to other strains in the brasilense clade.
  • The study found genes related to stress response, UV tolerance, and potential adaptations to environmental challenges, suggesting that Az19 may also adapt to living on plant surfaces (the phyllosphere).

Article Abstract

Azospirillum brasilense Az19 is a plant-beneficial bacterium capable of protecting plants from the negative effects of drought. The objective of this study was to determine and analyze the genomic sequence of strain Az19 as a means of identifying putative stress-adaptation mechanisms. A high-quality draft genome of ca. 7 Mb with a predicted coding potential of 6710 genes was obtained. Phylogenomic analyses confirmed that Az19 belongs to the brasilense clade and is closely related to strains Az39 and REC3. Functional genomics revealed that the denitrification pathway of Az19 is incomplete, which was in agreement with a reduced growth on nitrate under low O concentrations. Putative genes of the general stress response and oxidative stress-tolerance, as well as synthesis of exopolysaccharides, carotenoids, polyamines and several osmolytes, were detected. An additional poly-beta-hydroxybutyrate (PHB) synthase coding gene was found in Az19 genome, but the accumulation of PHB did not increase under salinity. The detection of exclusive genes related to DNA repair led to discover that strain Az19 also has improved UV-tolerance, both in vitro and in planta. Finally, the analysis revealed the presence of multiple kaiC-like genes, which could be involved in stress-tolerance and, possibly, light responsiveness. Although A. brasilense has been a model for the study of beneficial plant-associated rhizobacteria, the evidence collected in this current study suggests, for the first time in this bacterial group, an unexpected possibility of adaptation to the phyllosphere.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.syapm.2020.126130DOI Listing

Publication Analysis

Top Keywords

azospirillum brasilense
8
brasilense az19
8
strain az19
8
az19
7
signs phyllospheric
4
phyllospheric lifestyle
4
lifestyle genome
4
genome stress-tolerant
4
stress-tolerant strain
4
strain azospirillum
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!