Inter-channel phase differences during sleep spindles are altered in Veterans with PTSD.

Neuroimage Clin

Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, USA. Electronic address:

Published: June 2021

Sleep disturbances are common complaints in patients with post-traumatic stress disorder (PTSD). To date, however, objective markers of PTSD during sleep remain elusive. Sleep spindles are distinctive bursts of brain oscillatory activity during non-rapid eye movement (NREM) sleep and have been implicated in sleep protection and sleep-dependent memory processes. In healthy sleep, spindles observed in electroencephalogram (EEG) data are highly synchronized across different regions of the scalp. Here, we aimed to investigate whether the spatiotemporal synchronization patterns between EEG channels during sleep spindles, as quantified by the phase-locking value (PLV) and the mean phase difference (MPD), are altered in PTSD. Using high-density (64-channel) EEG data recorded from 78 combat-exposed Veteran men (31 with PTSD and 47 without PTSD) during two consecutive nights of sleep, we examined group differences in the PLV and MPD for slow (10-13 Hz) and fast (13-16 Hz) spindles separately. To evaluate the reproducibility of our findings, we set apart the first 47 consecutive participants (18 with PTSD) for the initial discovery and reserved the remaining 31 participants (13 with PTSD) for replication analysis. In the discovery analysis, compared to the non-PTSD group, the PTSD group showed smaller MPDs during slow spindles between the frontal and centro-parietal channel pairs on both nights. We obtained reproducible results in the replication analysis in terms of statistical significance and effect size. The PLVs during slow or fast spindles did not significantly differ between groups. The reduced inter-channel phase difference during slow spindles in PTSD may reflect pathological changes in the underlying thalamocortical circuits. This novel finding, if independently validated, may prove useful in developing sleep-focused PTSD diagnostics and interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7479269PMC
http://dx.doi.org/10.1016/j.nicl.2020.102390DOI Listing

Publication Analysis

Top Keywords

sleep spindles
16
ptsd
11
sleep
9
inter-channel phase
8
spindles
8
ptsd sleep
8
eeg data
8
phase difference
8
participants ptsd
8
replication analysis
8

Similar Publications

Introduction: Changes in sleep physiology can predate cognitive symptoms by decades in persons with Alzheimer's disease (AD), but it remains unclear which sleep characteristics predict cognitive and neurodegenerative changes after AD onset.

Methods: Using data from a prospective cohort of mild to moderate AD (n = 60), we analyzed non-rapid eye movement sleep spindles and slow oscillations (SOs) at baseline and their associations with baseline amyloid beta (Aβ) and tau and with cognition from baseline to 3-year follow-up.

Results: Higher spindle and SO activity predicted significant changes in Aβ and tau at baseline, lower Alzheimer's Disease Assessment Scale Cognitive Subscale (better cognitive performance) score, and higher Mini-Mental State Examination score from baseline to 36 months.

View Article and Find Full Text PDF

Comprehensive assessment reveals numerous clinical and neurophysiological differences between MECP2-allelic disorders.

Ann Clin Transl Neurol

January 2025

Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA.

Objective: Rett syndrome (RTT) and MECP2 duplication syndrome (MDS) result from under- and overexpression of MECP2, respectively. Preclinical studies using genetic-based treatment showed robust phenotype recovery for both MDS and RTT. However, there is a risk of converting MDS to RTT, or vice versa, if accurate MeCP2 levels are not achieved.

View Article and Find Full Text PDF

Study Objectives: Sleep spindles, defining electroencephalographic oscillations of nonrapid eye movement (NREM) stage 2 sleep (N2), mediate sleep-dependent memory consolidation (SDMC). Spindles are also thought to protect sleep continuity by suppressing thalamocortical sensory relay. Schizophrenia is characterized by spindle deficits and a correlated reduction of SDMC.

View Article and Find Full Text PDF

Background And Objectives: Rolandic epilepsy (RE), the most common childhood focal epilepsy syndrome, is characterized by a transient period of sleep-activated epileptiform activity in the centrotemporal regions and variable cognitive deficits. Sleep spindles are prominent thalamocortical brain oscillations during sleep that have been mechanistically linked to sleep-dependent memory consolidation in animal models and healthy controls. Sleep spindles are decreased in RE and related sleep-activated epileptic encephalopathies.

View Article and Find Full Text PDF

Individualized temporal patterns drive human sleep spindle timing.

Proc Natl Acad Sci U S A

January 2025

Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115.

Sleep spindles are cortical electrical oscillations considered critical for memory consolidation and sleep stability. The timing and pattern of sleep spindles are likely to be important in driving synaptic plasticity during sleep as well as preventing disruption of sleep by sensory and internal stimuli. However, the relative importance of factors such as sleep depth, cortical up/down-state, and temporal clustering in governing sleep spindle dynamics remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!