Aqueous solutions of hydroxyl-functionalized ionic liquids: Molecular dynamics studies.

J Mol Graph Model

School of Chemical Sciences, National Institute of Science Education & Research - Bhubaneswar, P.O: Jatni, Khurda, Odisha, 752050, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India. Electronic address:

Published: December 2020

A series of aqueous solutions of 1-(n-hydroxyalkyl)-3-(n-hydroxyalkyl) imidazolium bromide ([HOCCOHIm][Br], with n and m = 2, 6,10 and 14) were studied by atomistic molecular dynamics simulations. Structural properties were characterized by the radial distribution functions between different pairs, angular distributions and aggregation numbers. Dynamics of the system has been investigated by computing the diffusion of the ions and molecules. Structures of the aggregates formed depend upon the length of the hydroxyalkyl chains. The long-distance spatial correlations observed in solutions with cations having long chain substituent are arising due to the formation of intercalated structures. A thin film like structure is formed in solutions having longer hydroxyalkyl chains, with the structure stabilized by the dispersion interactions between the interdigitated alkyl chains and the hydrogen bond formation between the hydroxyl group of a cation with head group of a different cation. Anions are dispersed near the surface of the film.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmgm.2020.107721DOI Listing

Publication Analysis

Top Keywords

aqueous solutions
8
molecular dynamics
8
hydroxyalkyl chains
8
group cation
8
solutions hydroxyl-functionalized
4
hydroxyl-functionalized ionic
4
ionic liquids
4
liquids molecular
4
dynamics studies
4
studies series
4

Similar Publications

Strategies and Prospects for Engineering a Stable Zn Metal Battery: Cathode, Anode, and Electrolyte Perspectives.

Acc Chem Res

January 2025

Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials Shanghai, Fudan University, Shanghai 200433, PR China.

ConspectusZinc metal batteries (ZMBs) appear to be promising candidates to replace lithium-ion batteries owing to their higher safety and lower cost. Moreover, natural reserves of Zn are abundant, being approximately 300 times greater than those of Li. However, there are some typical issues impeding the wide application of ZMBs.

View Article and Find Full Text PDF

Despite extensive research on the use of salts to enhance micellar growth, numerous questions remain regarding the impact of ionic exchange and molecular structure on charge neutralization. This study looks into how certain cations (Na, Ca, and Mg) affect the structure of a cocamidopropyl betaine CAPB and sodium dodecylbenzenesulfonate SDBS surfactant mixture, aiming toward applications in targeted delivery systems. The mixture consists of a zwitterionic surfactant, cocamidopropyl betaine (CAPB), and an anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), combined in varying molar ratios at a total concentration of 200 mM.

View Article and Find Full Text PDF

Hydrogen-bonded cocrystals have attracted considerable attention as they allow fine-tuning of properties through the choice of hydrogen-bond donors and acceptors. In this study, triphenylarsine oxide (PhAsO) is introduced as a strong hydrogen-bond acceptor molecule. Due to its higher Lewis basicity compared to triphenylphosphine oxide (PhPO), it acts as a strong hydrogen-bond acceptor, which is demonstrated in six new cocrystals with HO and -di(hydroperoxy)cycloalkanes.

View Article and Find Full Text PDF

Spontaneous adsorption of iridium chloride complex on oxychloride photocatalysts provides efficient and durable reaction site for water oxidation.

Chem Commun (Camb)

January 2025

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.

The visible-light-driven O evolution on oxychloride photocatalysts, such as BiNbOCl, was significantly enhanced by stirring in an aqueous solution containing IrCl in the dark. Various characterizations indicated that highly dispersed IrOHCl-like species spontaneously formed on the oxychloride surface, serving as effective and stable cocatalysts for enhancing O evolution.

View Article and Find Full Text PDF

Bioinspired Antiswelling Hydrogel Sensors with High Strength and Rapid Self-Recovery for Underwater Information Transmission.

ACS Appl Mater Interfaces

January 2025

School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.

Hydrogel-based sensors typically demonstrate conspicuous swelling behavior in aqueous environments, which can severely compromise the mechanical integrity and distort sensing signals, thereby considerably constraining their widespread applicability. Drawing inspiration from the multilevel heterogeneous structures in biological tissues, an antiswelling hydrogel sensor endowed with high strength, rapid self-recovery, and low swelling ratio was fabricated through a water-induced phase separation and coordination cross-linking strategy. A dense heterogeneous architecture was developed by the integration of "rigid" quadridentate carboxyl-Zr coordination bonds and "soft" hydrophobic unit-rich regions featuring π-π stacking and cation-π interactions into the hydrogels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!