Background And Objective: Surface electromyography (sEMG) has been used for robotic rehabilitation engineering for volitional control of hand prostheses or elbow exoskeleton, however, using sEMG for volitional control of an upper limb exoskeleton has not been perfectly developed. The long-term goal of our study is to process shoulder muscle bio-electrical signals for rehabilitative robotic assistive device motion control. The purposes of this study included: 1) to test the feasibility of machine learning algorithms in shoulder motion pattern recognition using sEMG signals from shoulder and upper limb muscles, 2) to investigate the influence of motion speed, individual variability, EMG recording device, and the amount of EMG datasets on the shoulder motion pattern recognition accuracy.
Methods: A novel convolutional neural network (CNN) structure was constructed to process EMG signals from 12 muscles for the pattern recognition of upper arm motions including resting, drinking, backward-forward motion, and abduction motion. The accuracy of the CNN models for pattern recognition under different motion speeds, among individuals, and by EMG recording devices was statistically analyzed using ANOVA, GLM Univariate analysis, and Chi-square tests. The influence of EMG dataset number used for CNN model training on recognition accuracy was studied by gradually increasing dataset number until the highest accuracy was obtained.
Results: Results showed that the accuracy of the normal speed CNN model in motion pattern recognition was 97.57% for normal speed motions and 97.07% for fast speed motions. The accuracy of the cross-subjects CNN model in motion pattern recognition was 79.64%. The accuracy of the cross-device CNN model in motion pattern recognition was 88.93% for normal speed motion and 80.87% for mixed speed. There was a statistical difference in pattern recognition accuracy between different CNN models.
Conclusion: The EMG signals of shoulder and upper arm muscles from the upper limb motions can be processed using CNN algorithms to recognize the identical motions of the upper limb including drinking, forward/backward, abduction, and resting. A simple CNN model trained by EMG datasets of a designated motion speed accurately detected the motion patterns of the same motion speed, yielding the highest accuracy compared with other mixed CNN models for various speeds of motion pattern recognition. Increase of the number of EMG datasets for CNN model training improved the pattern recognition accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2020.105721 | DOI Listing |
J Affect Disord
January 2025
Department of Psychiatry, University of Oxford, Warneford Ln, Headington, Oxford OX3 7JX, United Kingdom; Oxford Health NHS Foundation Trust, Warneford Ln, Headington, Oxford OX3 7JX, United Kingdom. Electronic address:
Background: The renin angiotensin system (RAS) is implicated in various cognitive processes relevant to anxiety. However, the role of the RAS in pattern separation, a hippocampal memory mechanism that enables discrete encoding of similar stimuli, is unclear. Given the proposed role of this mechanism in overgeneralization and the maintenance of anxiety, we explored the influence of the RAS on mnemonic discrimination i.
View Article and Find Full Text PDFComput Biol Med
January 2025
School of Computer Science, Chungbuk National University, Cheongju 28644, Republic of Korea. Electronic address:
The fusion index is a critical metric for quantitatively assessing the transformation of in vitro muscle cells into myotubes in the biological and medical fields. Traditional methods for calculating this index manually involve the labor-intensive counting of numerous muscle cell nuclei in images, which necessitates determining whether each nucleus is located inside or outside the myotubes, leading to significant inter-observer variation. To address these challenges, this study proposes a three-stage process that integrates the strengths of pattern recognition and deep-learning to automatically calculate the fusion index.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Cognitive Systems Lab, University of Bremen, 28359 Bremen, Germany.
This paper presents an approach for event recognition in sequential images using human body part features and their surrounding context. Key body points were approximated to track and monitor their presence in complex scenarios. Various feature descriptors, including MSER (Maximally Stable Extremal Regions), SURF (Speeded-Up Robust Features), distance transform, and DOF (Degrees of Freedom), were applied to skeleton points, while BRIEF (Binary Robust Independent Elementary Features), HOG (Histogram of Oriented Gradients), FAST (Features from Accelerated Segment Test), and Optical Flow were used on silhouettes or full-body points to capture both geometric and motion-based features.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Artifcial Intelligence, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea.
Sensor-based gesture recognition on mobile devices is critical to human-computer interaction, enabling intuitive user input for various applications. However, current approaches often rely on server-based retraining whenever new gestures are introduced, incurring substantial energy consumption and latency due to frequent data transmission. To address these limitations, we present the first on-device continual learning framework for gesture recognition.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK.
Objective and continuous monitoring of Parkinson's disease (PD) tremor in free-living conditions could benefit both individual patient care and clinical trials, by overcoming the snapshot nature of clinical assessments. To enable robust detection of tremor in the context of limited amounts of labeled training data, we propose to use prototypical networks, which can embed domain expertise about the heterogeneous tremor and non-tremor sub-classes. We evaluated our approach using data from the Parkinson@Home Validation study, including 8 PD patients with tremor, 16 PD patients without tremor, and 24 age-matched controls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!