Using convolutional neural network for predicting cyanobacteria concentrations in river water.

Water Res

School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798, Republic of Korea. Electronic address:

Published: November 2020

Machine learning modeling techniques have emerged as a potential means for predicting algal blooms. In this study, synthetic spatio-temporal water quality data for a river section were generated with a 3D water quality model and used to investigate the capability of a convolutional neural network (CNN) for predicting harmful cyanobacterial blooms. The CNN model displayed a reasonable capacity for short-term predictions of cyanobacteria (Microcystis) biomass. In the nowcasting of Microcystis, the CNN performance had a Nash-Sutcliffe Efficiency (NSE) of 0.87. An increase in the forecast lead time resulted in a decrease in the prediction accuracy, reducing the NSE from 0.87 to 0.58. As the spatial observation density increased from 20% to 100% of the input image grids, the CNN prediction NSE had improved from 0.70 to 0.84. Adding noise to the data resulted in accuracy deterioration, but even at the noise amplitude of 10%, the accuracy was acceptable for some applications, with NSE = 0.76. Visualization of the CNN results characterized its performance variations across the studied river reach. Overall, this study successfully demonstrated the capability of the CNN model for cyanobacterial bloom prediction using high temporal frequency images.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2020.116349DOI Listing

Publication Analysis

Top Keywords

convolutional neural
8
neural network
8
water quality
8
cnn model
8
nse 087
8
cnn
6
network predicting
4
predicting cyanobacteria
4
cyanobacteria concentrations
4
concentrations river
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!