Viral egress and autophagy are two mechanisms that seem to be strictly connected in Herpesviruses's biology. Several data suggest that the autophagic machinery facilitates the egress of viral capsids and thus the production of new infectious particles. In the Herpesvirus family, viral nuclear egress is controlled and organized by a well conserved group of proteins named Nuclear Egress Complex (NEC). In the case of EBV, NEC is composed by BFRF1 and BFLF2 proteins, although the alterations of the nuclear host cell architecture are mainly driven by BFRF1, a multifunctional viral protein anchored to the inner nuclear membrane of the host cell. BFRF1 shares a peculiar distribution with several nuclear components and with them it strictly interacts. In this study, we investigated the possible role of BFRF1 in manipulating autophagy, pathway that possibly originates from nucleus, regulating the interplay between autophagy and viral egress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micinf.2020.08.002 | DOI Listing |
Nat Commun
December 2024
Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
Parainfluenza virus 3 (PIV3) infection poses a substantial risk to vulnerable groups including infants, the elderly, and immunocompromised individuals, and lacks effective treatments or vaccines. This study focuses on targeting the hemagglutinin-neuraminidase (HN) protein, a structural glycoprotein of PIV3 critical for viral infection and egress. With the objective of targeting these activities of HN, we identified eight neutralizing human monoclonal antibodies (mAbs) with potent effects on viral neutralization, cell-cell fusion inhibition, and complement deposition.
View Article and Find Full Text PDFVet Sci
December 2024
Pingliang Vocational and Technical College, Pingliang 744000, China.
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious virus affecting pigs with significant impacts to the swine industry worldwide. This review provides a comprehensive understanding of post-translational modifications (PTMs) associated with PRRSV infection. We discuss the various types of PTMs, including phosphorylation, ubiquitination, SUMoylation, acetylation, glycosylation, palmitoylation, and lactylation, that occur during PRRSV infection.
View Article and Find Full Text PDFJ Virol
December 2024
State Key Laboratory for Animal Disease Control and Prevention & National Data Center for Animal Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.
Neutralizing antibodies (nAbs) are important for the treatment of emerging viral diseases and for effective vaccine development. In this study, we generated and evaluated three nAbs (1H9, 2D7, and C4H4) against H7N9 influenza viruses and found that they differ in their ability to inhibit viral attachment, membrane fusion, and egress. We resolved the cryo-electron microscopy (cryo-EM) structures of H7N9 hemagglutinin (HA) alone and in complex with the nAb antigen-binding fragments (Fabs) and identified the HA head-located epitope for each nAb, thereby revealing the molecular basis and key residues that determine the differences in these nAbs in neutralizing H7N9 viruses.
View Article and Find Full Text PDFJ Gen Virol
December 2024
Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China.
The Bombyx mori nucleopolyhedrovirus (BmNPV) is a DNA virus that affects the silkworm, , causing substantial economic losses in sericulture. This study investigates the mechanisms underlying budded virus egress, focusing on the roles of the ubiquitin-proteasome pathway (UPP) machinery. BmNPV produces two virion types: budded virions (BVs) and occlusion-derived virions (ODVs), which differ in their envelope origins and functions.
View Article and Find Full Text PDFJ Infect Dis
December 2024
Division of Infectious Diseases & Global Public Health, University of California San Diego, La Jolla CA, USA.
Background: To date, HIV molecular epidemiology (HIV ME) has been primarily used to identify clusters of related infections (cluster detection and response [CDR]) and then address interventions to these clusters. Community groups have raised concern regarding CDR regarding privacy and ethical concerns. Here we demonstrate how an alternative approach to HIV ME can provide public health benefit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!