Studies in air pollution epidemiology are of paramount importance in diagnosing and improve life quality. To explore new methods or modify existing ones is critical to obtain better results. Most air pollution epidemiology studies use the Generalized Linear Model, especially the default version of R, Splus, SAS, and Stata softwares, which use maximum likelihood estimators in parameter optimization. Also, a smooth time function (usually spline) is generally used as a pre-processing step to consider seasonal and long-term tendencies. This investigation introduces a new approach to GLM, proposing the estimation of the free coefficients through bio-inspired metaheuristics - Particle Swarm Optimization (PSO), Genetic Algorithms, and Differential Evolution, as well as the replacement of the spline function by a simple normalization procedure. The considered case studies comprise three important cities of São Paulo state, Brazil with distinct characteristics: São Paulo, Campinas, and Cubatão. We considered the impact of particles with an aerodynamic diameter less than 10 μm (PM), ambient temperature, and relative humidity in the number of hospital admissions for respiratory diseases (ICD-10, J00 to J99). The results showed that the new approach (especially PSO) brings performance gains compared to the default version of statistical software like R.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2020.110106 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
The majority of industries throughout the world rely largely on fossil fuels as their primary energy source. However, these resources are finite and become scarcer by the day. Therefore, exploring alternative fuels and additives for diesel fuel is imperative to mitigate fuel consumption.
View Article and Find Full Text PDFSci Rep
January 2025
School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
Lifestyle factors and ambient air pollution are linked to dementia and CMDs, yet few studies have investigated their impact on dementia risk in CMDs patients at the same time. The Cox proportional hazards model was used to evaluate the influence of lifestyle and ambient air pollution on the dementia risk of the CMDs population among 438,681 participants in the UK Biobank. It is found that the risk of developing mild cognitive impairment and dementia in the population seems to increase with the increase in the number of CMDs.
View Article and Find Full Text PDFAm J Epidemiol
January 2025
Division of Pulmonary and Critical Care Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
Long-term exposure to ambient air pollution has been associated with epigenetic age acceleration (EAA) in adults, but its impact on children remains less understood. This study analyzed data from 457 children (mean age: 7.9 years) in the Project Viva cohort (2007-2010, eastern Massachusetts, USA).
View Article and Find Full Text PDFEnviron Pollut
January 2025
Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.
Mobile air pollution measurements are typically aggregated by varying road segment lengths, grid cell sizes, and time intervals. How these spatiotemporal aggregation schemas affect the modeling performance of land use regression models has seldom been assessed. We used 5.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Delhi, Delhi 110007, India. Electronic address:
Urban air pollution has been a global challenge world-wide. While urban vegetation or forest modelling can be useful in reducing the toxicities of the atmospheric gases by their absorption, the surge in gaseous pollutants negatively affects plant growth, thereby altering photosynthetic efficiency and harvest index. The present review analyses our current understanding of the toxic and beneficial effects of atmospheric nitrogen oxides (NO), hydrogen sulphide (HS) and carbon monoxide (CO) on plant growth and metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!