We demonstrate the assembly of a compact, gel-like Langmuir-Blodgett film of rods formed by self-assembly of a β-sheet-forming water-soluble peptide, Ac-IKHLSVN-NH, at the surface of aqueous electrolytes. We characterize surface pressure hysteresis and demonstrate shear stiffening of the surface caused by area cycling, which we interpret as due to rearrangement and alignment of the rods. We show strong effects of the electrolyte on the assembly of the elementary rods, which can be related to the Hofmeister series and interpreted by effects on the interaction energies mediated by ions and water. Formation of β-sheet structures and assembly of these into surface-segregated semicrystalline gels was strongly promoted by ammonium sulfate electrolyte. With ammonium sulfate electrolyte as subphase for Langmuir-Blodgett film deposition, shear stiffening by surface area cycling resulted in very compact films on transfer to a substrate.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.0c01944DOI Listing

Publication Analysis

Top Keywords

water-soluble peptide
8
langmuir-blodgett film
8
shear stiffening
8
stiffening surface
8
area cycling
8
ammonium sulfate
8
sulfate electrolyte
8
aligned assembly
4
assembly 2-d
4
2-d gel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!